资讯专栏INFORMATION COLUMN

ElasticSearch的部署、同步与调优

Chaz / 1805人阅读

摘要:的能支持批量操作,大大提升了创建索引的效率。注意配置分词组件必须在创建索引之前,否则是无效的。调优的调优分两个层面,一是层面的调优,包括加大的可用内存及单线程内存。

ElasticSearch是一个强大的搜索服务器,基于Apache Lucene的全文搜索引擎开发,具有高性能、分布式和零配置的优点。在当前的项目中,我们希望ES能承担亿级文档的搜索,而ES也证明了即便面对这样的数据规模,也能实现十分迅速的搜索响应。

概念

节点(Node):节点是一个ES的实例,一般一台主机上部署一个节点-

集群(Cluster):集群由若干节点组成,和任意节点的通信等价于和集群的通信

分片(Shard):一个索引会分成多个分片存储,分片数量在索引建立后不可更改

副本(Replica):副本是分片的一个拷贝,目的在于提高系统的容错性和搜索的效率

索引(Index):类似数据库的库

类型(Type):类似数据库的表

文档(Document):类似数据库的行,包含一个或多个Field

字段(Field):搜索的最小单元,可通过Mapping定义不同的属性(比如可否被搜索)

部署
  

ElasticSearch 1.5.0版本为例

ES的使用很简单,从官网下载压缩包后,解压后输入如下指令:

./bin/elasticsearch -d --cluster.name [your_cluster_name] --node.name [your_node_name]

一旦在多台主机上启动拥有同一个cluster.name的ES实例,它们会自动组成一个集群。

elasticsearch-head

elasticsearch-head是一个必装的插件,它提供了一个web界面,显示集群和索引的状态,同时具备浏览和搜索文档的功能。只需要通过ES的plugin指令安装就OK了:

./bin/plugin -install mobz/elasticsearch-head
同步

通常线上系统都不会使用ES作为主存储,从主存储创建索引的效率是我们关心的。ES的bulk API能支持批量操作,大大提升了创建索引的效率。以下是使用pyelasticsearch(非官方的一个Python客户端)批量创建索引的范例:

pythonfrom pyelasticsearch import ElasticSearch
from pyelasticsearch import bulk_chunks

es = ElasticSearch()

def documents():
    for _doc in docs:
        yield es.index_op(doc=_doc, id=doc["id"])

for chunk in bulk_chunks(documents(), docs_per_chunk=500, bytes_per_chunk=10000):
    es.bulk(chunk, index="index-test", doc_type="doc")

单机索引200万条记录的耗时约10分钟。

中文

ES支持中文的前提是安装正确的分词组件,比如elasticsearch-analysis-ik。但貌似该组件的最新版本(1.2.9)不支持plugin指令直接安装,只能通过Maven重新编译了:

git clone https://github.com/medcl/elasticsearch-analysis-ik.git --depth 1
cd elasticsearch-analysis-ik/
# 真心希望你的网络棒棒嗒
mvn package
unzip ./target/releases/elasticsearch-analysis-ik-1.2.9.zip

zip解压得到5个jar包:

elasticsearch-analysis-ik-1.2.9.jar

httpclient-4.3.5.jar

httpcore-4.3.2.jar

commons-logging-1.1.3.jar

commons-codec-1.6.jar

返回ES目录,新建路径./plugins/analysis-ik并把上述jar包全部移进去。
第二步,把elasticsearch-analysis-ik/config/ik文件夹(IK自带的词典)复制到ES目录的./config路径下。
第三步,在./config/elasticsearch.yml文件的最后加上:

index:
  analysis:
    analyzer:
      ik:
          alias: [news_analyzer_ik,ik_analyzer]
          type: org.elasticsearch.index.analysis.IkAnalyzerProvider

index.analysis.analyzer.default.type : "ik"

至此大功告成。注意配置分词组件必须在创建索引之前,否则是无效的。

调优

ES的调优分两个层面,一是Java层面的调优,包括加大JVM的可用内存及单线程内存。

对Unix系统,可修改./bin/elasticsearch.in.sh文件:

# 一般分配主机1/4-1/2的内存
if [ "x$ES_MIN_MEM" = "x" ]; then
    ES_MIN_MEM=12g
fi
if [ "x$ES_MAX_MEM" = "x" ]; then
    ES_MAX_MEM=12g
fi

JAVA_OPTS="$JAVA_OPTS -Xms${ES_MIN_MEM}"
JAVA_OPTS="$JAVA_OPTS -Xmx${ES_MAX_MEM}"
# 线程大小, ES单线程承载的数据量比较大
JAVA_OPTS="$JAVA_OPTS -Xss128m"

调优的第二个层面是ES本身的调优,修改./config/elasticsearch.yml文件,关键的项目如下所示:

# 分片数量,推荐分片数*副本数=集群数量
# 分片会带来额外的分割和合并的损耗,理论上分片数越少,搜索的效率越高
index.number_of_shards: 20
# 锁定内存,不让JVM写入swapping,避免降低ES的性能
bootstrap.mlockall: true
# 缓存类型设置为Soft Reference,只有当内存不够时才会进行回收
index.cache.field.max_size: 50000
index.cache.field.expire: 10m
index.cache.field.type: soft
  

来自:建造者说

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/34037.html

相关文章

  • DataX限速调优

    ...个Channel会有严格速度控制,分两种,一种是控制每秒同步记录数,另外一种是每秒同步字节数,默认速度限制是1MB/s,可以根据具体硬件情况设置这个byte速度或者record速度,一般设置byte速度,比如:我们可以把单个Chan...

    不知名网友 评论0 收藏598
  • Java学习路线总结,搬砖工逆袭Java架构师(全网最强)

    ... 7】ShardingSphere实现分库分表【搬砖工逆袭Java架构师 8】Elasticsearch详解(建议收藏)【搬砖工逆袭Java架构师 10】 Nginx详解七、数据结构与算法 【数据结构与算法 1】稀疏数组【数据结构与算法 2】循环队列【数据结构与算法 3】...

    Scorpion 评论0 收藏0
  • 有赞搜索系统架构演进

    ...,并尽可能降低平台运维成本以及业务开发成本。 Elasticsearch Elasticsearch 是一个高可用分布式搜索引擎,一方面技术相对成熟稳定,另一方面社区也比较活跃,因此我们在搭建搜索系统过程中也是选择了 Elasticsearch 作为我们...

    wh469012917 评论0 收藏0
  • DataPipeline |《Apache Kafka实战》作者胡夕:Apache Kafka监控与

    ...像有点搞笑,但我确遇到过这样情况。比如当把Kafka部署在Docker上时就容易出现进程启动但服务没有成功启动情形。正常启动下,一个Kafka服务器起来时候,应该有两个端口,一个端口是9092常规端口,会建一个TCP链接。...

    lvzishen 评论0 收藏0
  • DataPipeline |《Apache Kafka实战》作者胡夕:Apache Kafka监控与

    ...像有点搞笑,但我确遇到过这样情况。比如当把Kafka部署在Docker上时就容易出现进程启动但服务没有成功启动情形。正常启动下,一个Kafka服务器起来时候,应该有两个端口,一个端口是9092常规端口,会建一个TCP链接。...

    walterrwu 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<