资讯专栏INFORMATION COLUMN

[转]:利用bloom filter算法处理大规模数据过滤

waltr / 3438人阅读

摘要:误判率的大小由函数的个数函数优劣以及存储的位空间大小共同决定。主要的难点其实在于估算保证指定误判率的情况下,到底需要多少个函数,多少的存储空间。

Bloom Filter是由Bloom在1970年提出的一种快速查找算法,通过多个hash算法来共同判断某个元素是否在某个集合内。可以用于网络爬虫的url重复过滤、垃圾邮件的过滤等等。

它相比hash容器的一个优势就是,不需要存储元素的实际数据到容器中去来一个个的比较是否存在。
只需要对应的位段来标记是否存在就行了,所以想当节省内存,特别适合海量的数据处理。并且由于省去了存储元素和比较操作,所以性能也比基于hash容器的高了很多。

但是由于bloom filter没有去比较元素,只通过多个hash来判断唯一性,所以存在一定的hash冲突导致误判。误判率的大小由hash函数的个数、hash函数优劣、以及存储的位空间大小共同决定。

并且删除也比较困难,解决办法是使用其变种,带计数的bloom filter,这个这里就不多说了。

对于bloom filter算法的实现,相当简单:
首先分配一块固定的连续空间,大小是m个比特位(m/8+1个字节),然后再提供k个不同hash函数,同时对每个元素进行计算位索引。如果每个位索引对应的位都为1,则存在该元素,否则就是不存在。

可以看出,如果判断为不存在,那么肯定是不存在的,只有在判断为存在的时候,才会存在误判。

bloom filter主要的难点其实在于估算:
保证指定误判率的情况下,到底需要多少个hash函数,多少的存储空间。

首先来看下bloom filter的误判率计算公式:

假定有k个hash函数,m个比特位的存储空间,n个集合元素,则有误判率p:

p = (1 - ((1 - 1/ m) ^ kn))^k ~= (1 - e^(-kn/m))^k

根据这个,官方给出了一个计算k的最优解公式,使其满足给定p的情况下,存储空间达到最小:

k = (m / n) * ln2

把它带入概率公式得到:

p = (1 - e ^-((m/nln2)n/m))^(m/nln2)

简化为:

lnp = -m/n * (ln2)^2

因此,如果指定p,只需要满足如果公式,就可以得到最优解:

s = m/n = -lnp / (ln2 * ln2) = -log2(p) / ln2
k = s * ln2 = -log2(p)

理论值:

p < 0.1: k = 3.321928, m/n = 4.79
p < 0.01: k = 6.643856, m/n = 9.58
p < 0.001: k = 9.965784, m/n = 14.37
p < 0.0001: k = 13.287712, m/n = 19.170117

可以看出,这个确实能够在保证误判率的前提下,使其存储空间达到最小,但是使用的hash函数个数k
相对较多,至少也得4个,要满足p < 0.001,需要10个才行,这个对于字符串hash的计算来讲,性能损耗相当大的,实际使用中根本没法接受。

因此我们需要另外一种推到公式,可以认为指定p和k的情况下,来计算空间使用s=m/n的大小,这样我们在实际使用的时候,灵活性就大大提高了。

下面来看下,我自己推到出来的公式,首先还是依据误判率公式:

p = (1 - e^(-kn/m))^k

假定s=m/n,则有

p = (1 - e^(-k/s))^k

两边取导,得到:

lnp = k * ln(1 - e^(-k/s))

交换k:

(lnp) / k = ln(1 - e^(-k/s))

重新上e:

e^((lnp) / k) = 1 - e^(-k/s)

化简:

e^(-k/s) = 1 - e^((lnp) / k) = 1 - (e^lnp)^(1/k) = 1 - p^(1/k)

再求导:

-k/s = ln(1 - p^(1/k))

得出:

s = -k / ln(1 - p^(1/k))

假定c = p^(1/k)

s = -k / ln(1 - c)

利用泰勒展开式:ln(1 + x) ~= x - 0.5x^2 while x < 1 化简得到:

s ~= -k / (-c-0.5c^2) = 2k / (2c + c * c)

最后得出公式:

c = p^(1/k)
s = m / n = 2k / (2c + c * c)

假定有n=10000000的数据量,则有理论值:

p < 0.1 and k = 1: s = m/n = 9.523810
p < 0.1 and k = 2: s = m/n = 5.461082
p < 0.1 and k = 3: s = m/n = 5.245850, space ~= 6.3MB
p < 0.1 and k = 4: s = m/n = 5.552045, space ~= 6.6MB

p < 0.01 and k = 1: s = m/n = 99.502488
p < 0.01 and k = 2: s = m/n = 19.047619
p < 0.01 and k = 3: s = m/n = 12.570636, space ~= 15MB
p < 0.01 and k = 4: s = m/n = 10.922165, space ~= 13MB

p < 0.001 and k = 1: s = m/n = 999.500250
p < 0.001 and k = 2: s = m/n = 62.261118
p < 0.001 and k = 3: s = m/n = 28.571429, space ~= 34MB
p < 0.001 and k = 4: s = m/n = 20.656961, space ~= 24.6MB

p < 0.0001 and k = 1: s = m/n = 9999.500025
p < 0.0001 and k = 2: s = m/n = 199.004975
p < 0.0001 and k = 3: s = m/n = 63.167063, space ~= 75.3MB
p < 0.0001 and k = 4: s = m/n = 38.095238, space ~= 45.4MB
p < 0.0001 and k = 5: s = m/n = 29.231432, space ~= 24.8MB

可以看到,在k=3的情况下,其实已经可以达到我们平常使用所能的接受范围内了,没必要非得
使用最优解,除非在空间使用极为苛刻的情况下,而且这个公式,针对程序空间使用的调整,更加的灵活智能。

特别提下,经过实测,如果每个hash的实现非常优质,分布很均匀的情况下,其实际的误判率比理论值低很多:

就拿TBOX的bloom filter的实现做测试,n=10000000:

p < 0.01 and k = 3的情况下,其实际误判率为:0.004965
p < 0.001 and k = 3的情况下,其实际误判率为:0.000967

所以好的hash函数算法也是尤为的重要。

下面来看下TBOX提供的bloom filter的使用,用起来也是相当的方便:

// 总的元素个数
tb_size_t count = 10000000;

/* 初始化bloom filter
 *
 * TB_BLOOM_FILTER_PROBABILITY_0_01: 预定义的误判率,接近0.01
 * 注:由于内部使用位移数来表示:1 / 2^6 = 0.015625 ~= 0.01
 * 所以实际传入的误判率,有可能稍微大一点,但是还是相当接近的
 *
 * 3:为k值,hash函数的个数,最大不超过15个
 *
 * count:指定的元素规模数
 *
 * tb_item_func_long():容器的元素类型,主要是用其内定的hash函数,如果要自定义hash函数,可以替换:
 *
 * tb_size_t tb_xxxxxx_hash(tb_item_func_t* func, tb_cpointer_t data, tb_size_t mask, tb_size_t index)
 * {
 *      // mask为hash掩码,index为第index个hash算法的索引
 *      return compute_hash(data, index) & mask;
 * }
 *
 * tb_item_func_t func = tb_item_func_long();
 * func.hash = tb_xxxxxx_hash;
 *
 * 来进行
 */
tb_bloom_filter_ref_t filter = tb_bloom_filter_init(TB_BLOOM_FILTER_PROBABILITY_0_01, 3, count, tb_item_func_long());

if (filter)
{
    tb_size_t i = 0;
    for (i = 0; i < count; i++)
    {
        // 产生随机数
        tb_long_t value = tb_random();
        
        // 设置值到filter内,如果不存在,则返回tb_true表示设置成功
        if (tb_bloom_filter_set(filter, (tb_cpointer_t)value))
        {
             // 添加元素成功,之前元素不存在
             // 不会存在误判
        }
        else
        {
             // 添加失败,添加的元素已经存在
             // 这里可能会存在误判
        }
        
        // 仅仅判断元素是否存在
        if (tb_bloom_filter_get(filter, (tb_cpointer_t)data)
        {
             // 元素已经存在
             // 这里可能会存在误判
        }
        else
        {
             // 元素不存在
             // 不会存在误判
        }
    }
    
    // 退出filter
    tb_bloom_filter_exit(filter);
}

// 常用预定义的误判率,也可以指定其他值,注:必须是位移数,而不是实际值
typedef enum __tb_bloom_filter_probability_e
{
    TB_BLOOM_FILTER_PROBABILITY_0_1         = 3 ///!< 1 / 2^3 = 0.125 ~= 0.1
,   TB_BLOOM_FILTER_PROBABILITY_0_01        = 6 ///!< 1 / 2^6 = 0.015625 ~= 0.01
,   TB_BLOOM_FILTER_PROBABILITY_0_001       = 10 ///!< 1 / 2^10 = 0.0009765625 ~= 0.001
,   TB_BLOOM_FILTER_PROBABILITY_0_0001      = 13 ///!< 1 / 2^13 = 0.0001220703125 ~= 0.0001
,   TB_BLOOM_FILTER_PROBABILITY_0_00001     = 16 ///!< 1 / 2^16 = 0.0000152587890625 ~= 0.00001
,   TB_BLOOM_FILTER_PROBABILITY_0_000001    = 20 ///!< 1 / 2^20 = 0.00000095367431640625 ~= 0.000001
        
}tb_bloom_filter_probability_e;

TBOX项目详情

TBOX项目源码

TBOX项目文档

原文出处: http://tboox.org/cn/2016/02/03/bloom-filter/

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/8195.html

相关文章

  • 如何判断一个元素在亿级数据中是否存在?

    摘要:需求其实很清晰,只是要判断一个数据是否存在即可。实际情况也是如此既然要判断一个数据是否存在于集合中,考虑的算法的效率以及准确性肯定是要把数据全部到内存中的。所以布隆过滤有以下几个特点只要返回数据不存在,则肯定不存在。 showImg(https://segmentfault.com/img/remote/1460000017137896); 前言 最近有朋友问我这么一个面试题目: 现在...

    feng409 评论0 收藏0
  • 论文《TinyLFU: A Highly Ecient Cache Admission Polic

    摘要:在静态的频率分布下,性能也落后于因为其不再为不在缓存中的数据维护任何频率数据。可以详见的准入淘汰策略是新增一个新的元素时,判断使用该元素替换一个旧元素,是否可以提升缓存命中率。 1. Introduction LFU的局限: LFU实现需要维护大而复杂的元数据(频次统计数据等) 大多数实际工作负载中,访问频率随着时间的推移而发生根本变化(这是外卖业务不适合朴素LFU的根本原因) 针...

    高璐 评论0 收藏0
  • 论文《TinyLFU: A Highly Ecient Cache Admission Polic

    摘要:在静态的频率分布下,性能也落后于因为其不再为不在缓存中的数据维护任何频率数据。可以详见的准入淘汰策略是新增一个新的元素时,判断使用该元素替换一个旧元素,是否可以提升缓存命中率。 1. Introduction LFU的局限: LFU实现需要维护大而复杂的元数据(频次统计数据等) 大多数实际工作负载中,访问频率随着时间的推移而发生根本变化(这是外卖业务不适合朴素LFU的根本原因) 针...

    RobinQu 评论0 收藏0
  • Redis 缓存雪崩、缓存击穿、缓存穿透 解决方案

    摘要:缓存雪崩发生原因主机挂了,缓存全部失效。缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。解决思路布隆过滤器布隆过滤器布隆过滤器英语是年由布隆提出的。 ...

    MorePainMoreGain 评论0 收藏0
  • Elasticsearch 索引的映射配置详解

    摘要:本文就从的索引映射如何配置开始讲起。信息格式的配置支持为每个字段指定信息格式,以满足通过改变字段被索引的方式来提高性能的条件。 showImg(https://segmentfault.com/img/remote/1460000015981864?w=1280&h=719); 概述 Elasticsearch 与传统的 SQL数据库的一个明显的不同点是,Elasticsearch ...

    voidking 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<