资讯专栏INFORMATION COLUMN

Pygame实战:方块连接世界,云游大好河山—《我的世界》已上线!确定不进来康康嘛?

icattlecoder / 2720人阅读

摘要:导语我的世界是一款自由度极高的游戏,每个新存档的开启,就像是作为造物主的玩家在虚拟空间开辟了一个全新的宇宙。主题我的世界版本图片效果图如下。

导语

《我的世界》是一款自由度极高的游戏,每个新存档的开启,就像是作为造物主的玩家在虚拟空间开辟了一个全新的宇宙。

方块连接世界,云游大好河山。

      国庆不是回家了一趟嘛?隔壁家的小胖墩在跟家里的小孩子一起玩手机,一起下载 了这款《我的世界》的游戏,玩儿的可是非常起劲儿了,建房子打怪,别说那房子的模型着实蛮惊艳的哈!

 

至少我作为一个没玩过的人来说确实是很牛逼了~至少我做不来哈哈哈!这游戏看着怪好玩儿的撒,小编没忍住,毕竟长假嘛,怎得找点儿事情可做!

于是——今天木木子带大家一起编写的Python 1.0初级版本《我的世界》就要隆重出场了,期不期待吖~

正文

 

(1)《我是世界》游戏规则。

移动—前进:W,后退:S,向左:A,向右:D,环顾四周:鼠标,跳起:空格键,切换飞行模式:Tab。

选择建筑材料—砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击。

ESC退出程序。

(2)主要程序代码。

"""主题:我的世界1.0版本"""from __future__ import divisionimport sysimport mathimport randomimport timefrom collections import dequefrom pyglet import imagefrom pyglet.gl import *from pyglet.graphics import TextureGroupfrom pyglet.window import key, mouseTICKS_PER_SEC = 60# Size of sectors used to ease block loading.SECTOR_SIZE = 16WALKING_SPEED = 5FLYING_SPEED = 15GRAVITY = 20.0MAX_JUMP_HEIGHT = 1.0 # About the height of a block.# To derive the formula for calculating jump speed, first solve#    v_t = v_0 + a * t# for the time at which you achieve maximum height, where a is the acceleration# due to gravity and v_t = 0. This gives:#    t = - v_0 / a# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in#    s = s_0 + v_0 * t + (a * t^2) / 2JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)TERMINAL_VELOCITY = 50PLAYER_HEIGHT = 2if sys.version_info[0] >= 3:    xrange = rangedef cube_vertices(x, y, z, n):    """ Return the vertices of the cube at position x, y, z with size 2*n.    """    return [        x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,  # top        x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,  # bottom        x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,  # left        x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,  # right        x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,  # front        x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,  # back    ]def tex_coord(x, y, n=4):    """ Return the bounding vertices of the texture square.    """    m = 1.0 / n    dx = x * m    dy = y * m    return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + mdef tex_coords(top, bottom, side):    """ Return a list of the texture squares for the top, bottom and side.    """    top = tex_coord(*top)    bottom = tex_coord(*bottom)    side = tex_coord(*side)    result = []    result.extend(top)    result.extend(bottom)    result.extend(side * 4)    return resultTEXTURE_PATH = "texture.png"GRASS = tex_coords((1, 0), (0, 1), (0, 0))SAND = tex_coords((1, 1), (1, 1), (1, 1))BRICK = tex_coords((2, 0), (2, 0), (2, 0))STONE = tex_coords((2, 1), (2, 1), (2, 1))FACES = [    ( 0, 1, 0),    ( 0,-1, 0),    (-1, 0, 0),    ( 1, 0, 0),    ( 0, 0, 1),    ( 0, 0,-1),]def normalize(position):    """ Accepts `position` of arbitrary precision and returns the block    containing that position.    Parameters    ----------    position : tuple of len 3    Returns    -------    block_position : tuple of ints of len 3    """    x, y, z = position    x, y, z = (int(round(x)), int(round(y)), int(round(z)))    return (x, y, z)def sectorize(position):    """ Returns a tuple representing the sector for the given `position`.    Parameters    ----------    position : tuple of len 3    Returns    -------    sector : tuple of len 3    """    x, y, z = normalize(position)    x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE    return (x, 0, z)class Model(object):    def __init__(self):        # A Batch is a collection of vertex lists for batched rendering.        self.batch = pyglet.graphics.Batch()        # A TextureGroup manages an OpenGL texture.        self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())        # A mapping from position to the texture of the block at that position.        # This defines all the blocks that are currently in the world.        self.world = {}        # Same mapping as `world` but only contains blocks that are shown.        self.shown = {}        # Mapping from position to a pyglet `VertextList` for all shown blocks.        self._shown = {}        # Mapping from sector to a list of positions inside that sector.        self.sectors = {}        # Simple function queue implementation. The queue is populated with        # _show_block() and _hide_block() calls        self.queue = deque()        self._initialize()    def _initialize(self):        """ Initialize the world by placing all the blocks.        """        n = 80  # 1/2 width and height of world        s = 1  # step size        y = 0  # initial y height        for x in xrange(-n, n + 1, s):            for z in xrange(-n, n + 1, s):                # create a layer stone an grass everywhere.                self.add_block((x, y - 2, z), GRASS, immediate=False)                self.add_block((x, y - 3, z), STONE, immediate=False)                if x in (-n, n) or z in (-n, n):                    # create outer walls.                    for dy in xrange(-2, 3):                        self.add_block((x, y + dy, z), STONE, immediate=False)        # generate the hills randomly        o = n - 10        for _ in xrange(120):            a = random.randint(-o, o)  # x position of the hill            b = random.randint(-o, o)  # z position of the hill            c = -1  # base of the hill            h = random.randint(1, 6)  # height of the hill            s = random.randint(4, 8)  # 2 * s is the side length of the hill            d = 1  # how quickly to taper off the hills            t = random.choice([GRASS, SAND, BRICK])            for y in xrange(c, c + h):                for x in xrange(a - s, a + s + 1):                    for z in xrange(b - s, b + s + 1):                        if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:                            continue                        if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:                            continue                        self.add_block((x, y, z), t, immediate=False)                s -= d  # decrement side lenth so hills taper off    def hit_test(self, position, vector, max_distance=8):        """ Line of sight search from current position. If a block is        intersected it is returned, along with the block previously in the line        of sight. If no block is found, return None, None.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position to check visibility from.        vector : tuple of len 3            The line of sight vector.        max_distance : int            How many blocks away to search for a hit.        """        m = 8        x, y, z = position        dx, dy, dz = vector        previous = None        for _ in xrange(max_distance * m):            key = normalize((x, y, z))            if key != previous and key in self.world:                return key, previous            previous = key            x, y, z = x + dx / m, y + dy / m, z + dz / m        return None, None    def exposed(self, position):        """ Returns False is given `position` is surrounded on all 6 sides by        blocks, True otherwise.        """        x, y, z = position        for dx, dy, dz in FACES:            if (x + dx, y + dy, z + dz) not in self.world:                return True        return False    def add_block(self, position, texture, immediate=True):        """ Add a block with the given `texture` and `position` to the world.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to add.        texture : list of len 3            The coordinates of the texture squares. Use `tex_coords()` to            generate.        immediate : bool            Whether or not to draw the block immediately.        """        if position in self.world:            self.remove_block(position, immediate)        self.world[position] = texture        self.sectors.setdefault(sectorize(position), []).append(position)        if immediate:            if self.exposed(position):                self.show_block(position)            self.check_neighbors(position)    def remove_block(self, position, immediate=True):        """ Remove the block at the given `position`.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to remove.        immediate : bool            Whether or not to immediately remove block from canvas.        """        del self.world[position]        self.sectors[sectorize(position)].remove(position)        if immediate:            if position in self.shown:                self.hide_block(position)            self.check_neighbors(position)    def check_neighbors(self, position):        """ Check all blocks surrounding `position` and ensure their visual        state is current. This means hiding blocks that are not exposed and        ensuring that all exposed blocks are shown. Usually used after a block        is added or removed.        """        x, y, z = position        for dx, dy, dz in FACES:            key = (x + dx, y + dy, z + dz)            if key not in self.world:                continue            if self.exposed(key):                if key not in self.shown:                    self.show_block(key)            else:                if key in self.shown:                    self.hide_block(key)    def show_block(self, position, immediate=True):        """ Show the block at the given `position`. This method assumes the        block has already been added with add_block()        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to show.        immediate : bool            Whether or not to show the block immediately.        """        texture = self.world[position]        self.shown[position] = texture        if immediate:            self._show_block(position, texture)        else:            self._enqueue(self._show_block, position, texture)    def _show_block(self, position, texture):        """ Private implementation of the `show_block()` method.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to show.        texture : list of len 3            The coordinates of the texture squares. Use `tex_coords()` to            generate.        """        x, y, z = position        vertex_data = cube_vertices(x, y, z, 0.5)        texture_data = list(texture)        # create vertex list        # FIXME Maybe `add_indexed()` should be used instead        self._shown[position] = self.batch.add(24, GL_QUADS, self.group,            ("v3f/static", vertex_data),            ("t2f/static", texture_data))    def hide_block(self, position, immediate=True):        """ Hide the block at the given `position`. Hiding does not remove the        block from the world.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position of the block to hide.        immediate : bool            Whether or not to immediately remove the block from the canvas.        """        self.shown.pop(position)        if immediate:            self._hide_block(position)        else:            self._enqueue(self._hide_block, position)    def _hide_block(self, position):        """ Private implementation of the "hide_block()` method.        """        self._shown.pop(position).delete()    def show_sector(self, sector):        """ Ensure all blocks in the given sector that should be shown are        drawn to the canvas.        """        for position in self.sectors.get(sector, []):            if position not in self.shown and self.exposed(position):                self.show_block(position, False)    def hide_sector(self, sector):        """ Ensure all blocks in the given sector that should be hidden are        removed from the canvas.        """        for position in self.sectors.get(sector, []):            if position in self.shown:                self.hide_block(position, False)    def change_sectors(self, before, after):        """ Move from sector `before` to sector `after`. A sector is a        contiguous x, y sub-region of world. Sectors are used to speed up        world rendering.        """        before_set = set()        after_set = set()        pad = 4        for dx in xrange(-pad, pad + 1):            for dy in [0]:  # xrange(-pad, pad + 1):                for dz in xrange(-pad, pad + 1):                    if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:                        continue                    if before:                        x, y, z = before                        before_set.add((x + dx, y + dy, z + dz))                    if after:                        x, y, z = after                        after_set.add((x + dx, y + dy, z + dz))        show = after_set - before_set        hide = before_set - after_set        for sector in show:            self.show_sector(sector)        for sector in hide:            self.hide_sector(sector)    def _enqueue(self, func, *args):        """ Add `func` to the internal queue.        """        self.queue.append((func, args))    def _dequeue(self):        """ Pop the top function from the internal queue and call it.        """        func, args = self.queue.popleft()        func(*args)    def process_queue(self):        """ Process the entire queue while taking periodic breaks. This allows        the game loop to run smoothly. The queue contains calls to        _show_block() and _hide_block() so this method should be called if        add_block() or remove_block() was called with immediate=False        """        start = time.clock()        while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC:            self._dequeue()    def process_entire_queue(self):        """ Process the entire queue with no breaks.        """        while self.queue:            self._dequeue()class Window(pyglet.window.Window):    def __init__(self, *args, **kwargs):        super(Window, self).__init__(*args, **kwargs)        # Whether or not the window exclusively captures the mouse.        self.exclusive = False        # When flying gravity has no effect and speed is increased.        self.flying = False        # Strafing is moving lateral to the direction you are facing,        # e.g. moving to the left or right while continuing to face forward.        #        # First element is -1 when moving forward, 1 when moving back, and 0        # otherwise. The second element is -1 when moving left, 1 when moving        # right, and 0 otherwise.        self.strafe = [0, 0]        # Current (x, y, z) position in the world, specified with floats. Note        # that, perhaps unlike in math class, the y-axis is the vertical axis.        self.position = (0, 0, 0)        # First element is rotation of the player in the x-z plane (ground        # plane) measured from the z-axis down. The second is the rotation        # angle from the ground plane up. Rotation is in degrees.        #        # The vertical plane rotation ranges from -90 (looking straight down) to        # 90 (looking straight up). The horizontal rotation range is unbounded.        self.rotation = (0, 0)        # Which sector the player is currently in.        self.sector = None        # The crosshairs at the center of the screen.        self.reticle = None        # Velocity in the y (upward) direction.        self.dy = 0        # A list of blocks the player can place. Hit num keys to cycle.        self.inventory = [BRICK, GRASS, SAND]        # The current block the user can place. Hit num keys to cycle.        self.block = self.inventory[0]        # Convenience list of num keys.        self.num_keys = [            key._1, key._2, key._3, key._4, key._5,            key._6, key._7, key._8, key._9, key._0]        # Instance of the model that handles the world.        self.model = Model()        # The label that is displayed in the top left of the canvas.        self.label = pyglet.text.Label("", font_name="Arial", font_size=18,            x=10, y=self.height - 10, anchor_x="left", anchor_y="top",            color=(0, 0, 0, 255))        # This call schedules the `update()` method to be called        # TICKS_PER_SEC. This is the main game event loop.        pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)    def set_exclusive_mouse(self, exclusive):        """ If `exclusive` is True, the game will capture the mouse, if False        the game will ignore the mouse.        """        super(Window, self).set_exclusive_mouse(exclusive)        self.exclusive = exclusive    def get_sight_vector(self):        """ Returns the current line of sight vector indicating the direction        the player is looking.        """        x, y = self.rotation        # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and        # is 1 when looking ahead parallel to the ground and 0 when looking        # straight up or down.        m = math.cos(math.radians(y))        # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when        # looking straight up.        dy = math.sin(math.radians(y))        dx = math.cos(math.radians(x - 90)) * m        dz = math.sin(math.radians(x - 90)) * m        return (dx, dy, dz)    def get_motion_vector(self):        """ Returns the current motion vector indicating the velocity of the        player.        Returns        -------        vector : tuple of len 3            Tuple containing the velocity in x, y, and z respectively.        """        if any(self.strafe):            x, y = self.rotation            strafe = math.degrees(math.atan2(*self.strafe))            y_angle = math.radians(y)            x_angle = math.radians(x + strafe)            if self.flying:                m = math.cos(y_angle)                dy = math.sin(y_angle)                if self.strafe[1]:                    # Moving left or right.                    dy = 0.0                    m = 1                if self.strafe[0] > 0:                    # Moving backwards.                    dy *= -1                # When you are flying up or down, you have less left and right                # motion.                dx = math.cos(x_angle) * m                dz = math.sin(x_angle) * m            else:                dy = 0.0                dx = math.cos(x_angle)                dz = math.sin(x_angle)        else:            dy = 0.0            dx = 0.0            dz = 0.0        return (dx, dy, dz)    def update(self, dt):        """ This method is scheduled to be called repeatedly by the pyglet        clock.        Parameters        ----------        dt : float            The change in time since the last call.        """        self.model.process_queue()        sector = sectorize(self.position)        if sector != self.sector:            self.model.change_sectors(self.sector, sector)            if self.sector is None:                self.model.process_entire_queue()            self.sector = sector        m = 8        dt = min(dt, 0.2)        for _ in xrange(m):            self._update(dt / m)    def _update(self, dt):        """ Private implementation of the `update()` method. This is where most        of the motion logic lives, along with gravity and collision detection.        Parameters        ----------        dt : float            The change in time since the last call.        """        # walking        speed = FLYING_SPEED if self.flying else WALKING_SPEED        d = dt * speed # distance covered this tick.        dx, dy, dz = self.get_motion_vector()        # New position in space, before accounting for gravity.        dx, dy, dz = dx * d, dy * d, dz * d        # gravity        if not self.flying:            # Update your vertical speed: if you are falling, speed up until you            # hit terminal velocity; if you are jumping, slow down until you            # start falling.            self.dy -= dt * GRAVITY            self.dy = max(self.dy, -TERMINAL_VELOCITY)            dy += self.dy * dt        # collisions        x, y, z = self.position        x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)        self.position = (x, y, z)    def collide(self, position, height):        """ Checks to see if the player at the given `position` and `height`        is colliding with any blocks in the world.        Parameters        ----------        position : tuple of len 3            The (x, y, z) position to check for collisions at.        height : int or float            The height of the player.        Returns        -------        position : tuple of len 3            The new position of the player taking into account collisions.        """        # How much overlap with a dimension of a surrounding block you need to        # have to count as a collision. If 0, touching terrain at all counts as        # a collision. If .49, you sink into the ground, as if walking through        # tall grass. If >= .5, you"ll fall through the ground.        pad = 0.25        p = list(position)        np = normalize(position)        for face in FACES:  # check all surrounding blocks            for i in xrange(3):  # check each dimension independently                if not face[i]:                    continue                # How much overlap you have with this dimension.                d = (p[i] - np[i]) * face[i]                if d < pad:                    continue                for dy in xrange(height):  # check each height                    op = list(np)                    op[1] -= dy                    op[i] += face[i]                    if tuple(op) not in self.model.world:                        continue                    p[i] -= (d - pad) * face[i]                    if face == (0, -1, 0) or face == (0, 1, 0):                        # You are colliding with the ground or ceiling, so stop                        # falling / rising.                        self.dy = 0                    break        return tuple(p)    def on_mouse_press(self, x, y, button, modifiers):        """ Called when a mouse button is pressed. See pyglet docs for button        amd modifier mappings.        Parameters        ----------        x, y : int            The coordinates of the mouse click. Always center of the screen if            the mouse is captured.        button : int            Number representing mouse button that was clicked. 1 = left button,            4 = right button.        modifiers : int            Number representing any modifying keys that were pressed when the            mouse button was clicked.        """        if self.exclusive:            vector = self.get_sight_vector()            block, previous = self.model.hit_test(self.position, vector)            if (button == mouse.RIGHT) or /                    ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):                # ON OSX, control + left click = right click.                if previous:                    self.model.add_block(previous, self.block)            elif button == pyglet.window.mouse.LEFT and block:                texture = self.model.world[block]                if texture != STONE:                    self.model.remove_block(block)        else:            self.set_exclusive_mouse(True)    def on_mouse_motion(self, x, y, dx, dy):        """ Called when the player moves the mouse.        Parameters        ----------        x, y : int            The coordinates of the mouse click. Always center of the screen if            the mouse is captured.        dx, dy : float            The movement of the mouse.        """        if self.exclusive:            m = 0.15            x, y = self.rotation            x, y = x + dx * m, y + dy * m            y = max(-90, min(90, y))            self.rotation = (x, y)    def on_key_press(self, symbol, modifiers):        """ Called when the player presses a key. See pyglet docs for key        mappings.        Parameters        ----------        symbol : int            Number representing the key that was pressed.        modifiers : int            Number representing any modifying keys that were pressed.        """        if symbol == key.W:            self.strafe[0] -= 1        elif symbol == key.S:            self.strafe[0] += 1        elif symbol == key.A:            self.strafe[1] -= 1        elif symbol == key.D:            self.strafe[1] += 1        elif symbol == key.SPACE:            if self.dy == 0:                self.dy = JUMP_SPEED        elif symbol == key.ESCAPE:            self.set_exclusive_mouse(False)        elif symbol == key.TAB:            self.flying = not self.flying        elif symbol in self.num_keys:            index = (symbol - self.num_keys[0]) % len(self.inventory)            self.block = self.inventory[index]    def on_key_release(self, symbol, modifiers):        """ Called when the player releases a key. See pyglet docs for key        mappings.        Parameters        ----------        symbol : int            Number representing the key that was pressed.        modifiers : int            Number representing any modifying keys that were pressed.        """        if symbol == key.W:            self.strafe[0] += 1        elif symbol == key.S:            self.strafe[0] -= 1        elif symbol == key.A:            self.strafe[1] += 1        elif symbol == key.D:            self.strafe[1] -= 1    def on_resize(self, width, height):        """ Called when the window is resized to a new `width` and `height`.        """        # label        self.label.y = height - 10        # reticle        if self.reticle:            self.reticle.delete()        x, y = self.width // 2, self.height // 2        n = 10        self.reticle = pyglet.graphics.vertex_list(4,            ("v2i", (x - n, y, x + n, y, x, y - n, x, y + n))        )    def set_2d(self):        """ Configure OpenGL to draw in 2d.        """        width, height = self.get_size()        glDisable(GL_DEPTH_TEST)        viewport = self.get_viewport_size()        glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))        glMatrixMode(GL_PROJECTION)        glLoadIdentity()        glOrtho(0, max(1, width), 0, max(1, height), -1, 1)        glMatrixMode(GL_MODELVIEW)        glLoadIdentity()    def set_3d(self):        """ Configure OpenGL to draw in 3d.        """        width, height = self.get_size()        glEnable(GL_DEPTH_TEST)        viewport = self.get_viewport_size()        glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))        glMatrixMode(GL_PROJECTION)        glLoadIdentity()        gluPerspective(65.0, width / float(height), 0.1, 60.0)        glMatrixMode(GL_MODELVIEW)        glLoadIdentity()        x, y = self.rotation        glRotatef(x, 0, 1, 0)        glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))        x, y, z = self.position        glTranslatef(-x, -y, -z)    def on_draw(self):        """ Called by pyglet to draw the canvas.        """        self.clear()        self.set_3d()        glColor3d(1, 1, 1)        self.model.batch.draw()        self.draw_focused_block()        self.set_2d()        self.draw_label()        self.draw_reticle()    def draw_focused_block(self):        """ Draw black edges around the block that is currently under the        crosshairs.        """        vector = self.get_sight_vector()        block = self.model.hit_test(self.position, vector)[0]        if block:            x, y, z = block            vertex_data = cube_vertices(x, y, z, 0.51)            glColor3d(0, 0, 0)            glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)            pyglet.graphics.draw(24, GL_QUADS, ("v3f/static", vertex_data))            glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)    def draw_label(self):        """ Draw the label in the top left of the screen.        """        x, y, z = self.position        self.label.text = "%02d (%.2f, %.2f, %.2f) %d / %d" % (            pyglet.clock.get_fps(), x, y, z,            len(self.model._shown), len(self.model.world))        self.label.draw()    def draw_reticle(self):        """ Draw the crosshairs in the center of the screen.        """        glColor3d(0, 0, 0)        self.reticle.draw(GL_LINES)def setup_fog():    """ Configure the OpenGL fog properties.    """    # Enable fog. Fog "blends a fog color with each rasterized pixel fragment"s    # post-texturing color."    glEnable(GL_FOG)    # Set the fog color.    glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))    # Say we have no preference between rendering speed and quality.    glHint(GL_FOG_HINT, GL_DONT_CARE)    # Specify the equation used to compute the blending factor.    glFogi(GL_FOG_MODE, GL_LINEAR)    # How close and far away fog starts and ends. The closer the start and end,    # the denser the fog in the fog range.    glFogf(GL_FOG_START, 20.0)    glFogf(GL_FOG_END, 60.0)def setup():    """ Basic OpenGL configuration.    """    # Set the color of "clear", i.e. the sky, in rgba.    glClearColor(0.5, 0.69, 1.0, 1)    # Enable culling (not rendering) of back-facing facets -- facets that aren"t    # visible to you.    glEnable(GL_CULL_FACE)    # Set the texture minification/magnification function to GL_NEAREST (nearest    # in Manhattan distance) to the specified texture coordinates. GL_NEAREST    # "is generally faster than GL_LINEAR, but it can produce textured 图片    # with sharper edges because the transition between texture elements is not    # as smooth."    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)    setup_fog()def main():    window = Window(width=1800, height=1600, caption="Pyglet", resizable=True)    # Hide the mouse cursor and prevent the mouse from leaving the window.    window.set_exclusive_mouse(True)    setup()    pyglet.app.run()if __name__ == "__main__":    main()

(3)效果图如下。

正常的截图:

飞行模式下的截图:在天上越飞越远!幸好我手速比较快,不然看不到这截图了!

​总结

总的来说这初级版本的话很多毛病的哈!哈哈哈哈~大家拿到代码了可以自己修改修改哦~

等一个大佬优化这款Python的我的世界!

完整的免费源码领取处:

如需完整的项目源码+素材源码基地见:#私信小编06#或者点击蓝色文字添加即可获取免费的福利!

你们的支持是我最大的动力!!记得三连哦~mua 欢迎大家阅读往期的文章哦~

往期热门游戏文章推荐阅读——

1.9 Pygame实战:慎点|虐单身狗的最高境界是…【附源码】

2.0Pygame实战:利用Python实现智能五子棋,实现之后发现我玩不赢它!

1.2 Pygame实战:据说这是史上最难扫雷游戏,没有之一!你们感受下......

1.3 Pygame实战:对象突然想玩坦克大战,我用Python三十分钟实现!看!他开心的像个孩子!

文章汇总——

1.1Python—2021 |已有文章汇总 | 持续更新,直接看这篇就够了~

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/122434.html

相关文章

  • Pygame实战】开心——消消乐,你乐,我乐,大家乐~

    摘要:正文开心消消乐分为二部分首先是开心然后是消消乐游戏嘛嘿嘿一开心小故事三则近视聪明的学生杀手二消消乐游戏素材图片开心消消乐语音提示环境安装本文是由写的小游戏。 导语 你今天消消乐了吗? ​ 哈喽哈喽~木木子之前不是写过一篇百变消消乐嘛? 可能你们不记得了,没关系——今天重温一下,来一篇开心?...

    changfeng1050 评论0 收藏0
  • Pygame实战】嗷大喵历险记之程序员吸猫指南:真的太上头了~

    摘要:嗷大喵和他的小伙伴们快乐的生活在一起,他们总是能给大家带来欢乐。大家都说嗷大喵真棒。大家要做的就是解救嗷大喵远离恶龙。 导语 哈喽~大家好,我是木子,首先今天木子先给大家讲个小故事: 在喵界有这样一只网红——混迹于二次元、表情包界,贱萌活泼,调皮机灵,白色的大圆脸,脖子 上系了个铃铛,年龄不...

    dreamans 评论0 收藏0
  • Python文章合集 | 这些项目里肯定有你的新宠(入门到实战、游戏、Turtle、案例等)

    摘要:有趣好玩的个入门题案例都在这里等你下载。趣味连连看经典版童年经典火影忍者连连看,无需下载,在线可玩小游戏植物大战僵尸游戏真的有毒戒不掉啊实战项目实战项目做一个刮刮乐案例,一不小心着实惊艳到我了。 导语 为了大家能相应的找到自己那方面的文章,这边小编进行了文章的汇总合集,也特别感谢我的粉丝们...

    derek_334892 评论0 收藏0
  • 大话 JavaScript 动画

    摘要:直到年,世界上第一部动画片滑稽脸的幽默相问世。上一次视神经传递的图像将会在大脑中存留,直到下一次神经信号到达。移动设备还是相当惨烈,并没有开始支持。市面上有很多动画库,大家可以开箱即用。有一些是针对操作的,也有一些是针对对象。 背景 138.2亿年前,世界上没有时间和空间,或许世界都不存在,在一个似有似无的点上,汇集了所有的物质,它孕育着无限的能量与可能性。 宇宙大爆炸 巨大的内力已无...

    syoya 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<