资讯专栏INFORMATION COLUMN

传感与检测实验报告,差动变压器的特性测定,江南大学物联网自动化

taowen / 534人阅读

摘要:线性回归系数值线性回归系数值用来记录最大偏差寻找最大偏差最大偏差为求灵敏度灵敏度为求线性误差非线性误差为返回的系数公式返回常量系数系数公式求和求平方和返回对应项相乘后的和区间区间区间区间


public class LeastSquares {    public static void matching(double[] x, double[] y, double[] input, double fully) {        double k = getK(x, y);        double b = getB(x, y);        System.out.println("线性回归系数k值:/t"+k+"/n" + "线性回归系数b值:/t" + b);        double maxy = 0; //用来记录最大偏差        //寻找最大偏差        for (int i = 0; i < input.length; i++) {            if (Math.abs(k * input[i] + b - y[i]) > maxy){                maxy = Math.abs(k * input[i] + b - y[i]);            }        }        System.out.println("最大偏差为:" + maxy);        //求灵敏度        double s = 0;        double sum = 0;        for (int i = 1; i < y.length; i++) {            sum += y[i] - y[i-1];        }        s = sum / (y.length - 1) / 20;        System.out.println("灵敏度为:" + s);        //求线性误差        System.out.println("非线性误差为:" + maxy/fully);    }    //返回x的系数k公式:k=( n sum( xy ) - sum( x ) sum( y ) )/( n sum( x^2 )-sum(x) ^ 2 )    public static double getK(double[] x, double[] y) {        int n = x.length;        return (double) ((n * pSum(x, y) - sum(x) * sum(y)) / (n * sqSum(x) - Math.pow(sum(x), 2)));    }//返回常量系数系数b 公式:b = sum( y ) / n - k * sum( x ) / n    public static double getB(double[] x, double[] y) {        int n = x.length;        double k = getK(x, y);        return sum(y) / n - k * sum(x) / n;    }//求和    private static double sum(double[] ds) {        double s = 0;        for (double d : ds) {            s = s + d;        }        return s;    }//求平方和    private static double sqSum(double[] ds) {        double s = 0;        for (double d : ds) {            s = (double) (s + Math.pow(d, 2));        }        return s;    }//返回对应项相乘后的和    private static double pSum(double[] x, double[] y) {        double s = 0;        for (int i = 0; i < x.length; i++) {            s = s + x[i] * y[i];        }        return s;    }    public static void main(String[] args) {        double[] x1 = {0,0.2,0.4,0.6,0.8,1.0};        double[] y1 = {17.6,73.6,133,200,256,312};        double[] inputs1 = x1;        double[] x2 = {0,-0.2,-0.4,-0.6,-0.8,-1.0};        double[] y2 = {40.0,96,152,208,264,328};        double[] inputs2 = x2;        double[] x3 = {0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0};        double[] y3 = {17.6,73.6,133,200,256,312,372,428,484,548,600,672,712,776,832,888};        double[] inputs3 = x3;        double[] x4 = {0,-0.2,-0.4,-0.6,-0.8,-1.0,-1.2,-1.4,-1.6,-1.8,-2.0,-2.2,-2.4,-2.6,-2.8,-3.0};        double[] y4 = {40.0,96,152,208,264,328,384,440,496,552,616,666,720,784,840,898};        double[] inputs4 = x4;        System.out.println("+1区间");        matching(x1, y1,inputs1,y1[y1.length-1]);        System.out.println("-1区间");        matching(x2, y2,inputs2,y2[y2.length-1]);        System.out.println("+3区间");        matching(x3, y3,inputs3,y3[y3.length-1]);        System.out.println("-3区间");        matching(x4, y4,inputs4,y4[y4.length-1]);    }}


文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/123008.html

相关文章

发表评论

0条评论

最新活动
阅读需要支付1元查看
<