资讯专栏INFORMATION COLUMN

TensorFlow学习笔记(3):逻辑回归

wendux / 2455人阅读

摘要:前言本文使用训练逻辑回归模型,并将其与做比较。对数极大似然估计方法的目标函数是最大化所有样本的发生概率机器学习习惯将目标函数称为损失,所以将损失定义为对数似然的相反数,以转化为极小值问题。

前言

本文使用tensorflow训练逻辑回归模型,并将其与scikit-learn做比较。数据集来自Andrew Ng的网上公开课程Deep Learning

代码
#!/usr/bin/env python
# -*- coding=utf-8 -*-
# @author: 陈水平
# @date: 2017-01-04
# @description: compare the logistics regression of tensorflow with sklearn based on the exercise of deep learning course of Andrew Ng.
# @ref: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html

import tensorflow as tf
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import preprocessing

# Read x and y
x_data = np.loadtxt("ex4x.dat").astype(np.float32)
y_data = np.loadtxt("ex4y.dat").astype(np.float32)

scaler = preprocessing.StandardScaler().fit(x_data)
x_data_standard = scaler.transform(x_data)

# We evaluate the x and y by sklearn to get a sense of the coefficients.
reg = LogisticRegression(C=999999999, solver="newton-cg")  # Set C as a large positive number to minimize the regularization effect
reg.fit(x_data, y_data)
print "Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_)

# Now we use tensorflow to get similar results.
W = tf.Variable(tf.zeros([2, 1]))
b = tf.Variable(tf.zeros([1, 1]))
y = 1 / (1 + tf.exp(-tf.matmul(x_data_standard, W) + b))
loss = tf.reduce_mean(- y_data.reshape(-1, 1) *  tf.log(y) - (1 - y_data.reshape(-1, 1)) * tf.log(1 - y))

optimizer = tf.train.GradientDescentOptimizer(1.3)
train = optimizer.minimize(loss)

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)
for step in range(100):
    sess.run(train)
    if step % 10 == 0:
        print step, sess.run(W).flatten(), sess.run(b).flatten()

print "Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten())
print "Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W)))


# Problem solved and we are happy. But...
# I"d like to implement the logistic regression from a multi-class viewpoint instead of binary.
# In machine learning domain, it is called softmax regression
# In economic and statistics domain, it is called multinomial logit (MNL) model, proposed by Daniel McFadden, who shared the 2000  Nobel Memorial Prize in Economic Sciences.

print "------------------------------------------------"
print "We solve this binary classification problem again from the viewpoint of multinomial classification"
print "------------------------------------------------"

# As a tradition, sklearn first
reg = LogisticRegression(C=9999999999, solver="newton-cg", multi_class="multinomial")
reg.fit(x_data, y_data)
print "Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_)
print "A little bit difference at first glance. What about multiply them with 2?"

# Then try tensorflow
W = tf.Variable(tf.zeros([2, 2]))  # first 2 is feature number, second 2 is class number
b = tf.Variable(tf.zeros([1, 2]))
V = tf.matmul(x_data_standard, W) + b
y = tf.nn.softmax(V)  # tensorflow provide a utility function to calculate the probability of observer n choose alternative i, you can replace it with `y = tf.exp(V) / tf.reduce_sum(tf.exp(V), keep_dims=True, reduction_indices=[1])`

# Encode the y label in one-hot manner
lb = preprocessing.LabelBinarizer()
lb.fit(y_data)
y_data_trans = lb.transform(y_data)
y_data_trans = np.concatenate((1 - y_data_trans, y_data_trans), axis=1)  # Only necessary for binary class 

loss = tf.reduce_mean(-tf.reduce_sum(y_data_trans * tf.log(y), reduction_indices=[1]))
optimizer = tf.train.GradientDescentOptimizer(1.3)
train = optimizer.minimize(loss)

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)
for step in range(100):
    sess.run(train)
    if step % 10 == 0:
        print step, sess.run(W).flatten(), sess.run(b).flatten()

print "Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten())
print "Coefficients of tensorflow (raw input): K=%s, b=%s" % ((sess.run(W) / scaler.scale_).flatten(),  sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W)))

输出如下:

Coefficients of sklearn: K=[[ 0.14834077  0.15890845]], b=-16.378743
0 [ 0.33699557  0.34786162] [ -4.84287721e-09]
10 [ 1.15830743  1.22841871] [ 0.02142336]
20 [ 1.3378191   1.42655993] [ 0.03946959]
30 [ 1.40735555  1.50197577] [ 0.04853692]
40 [ 1.43754184  1.53418231] [ 0.05283691]
50 [ 1.45117068  1.54856908] [ 0.05484771]
60 [ 1.45742035  1.55512536] [ 0.05578374]
70 [ 1.46030474  1.55814099] [ 0.05621871]
80 [ 1.46163988  1.55953443] [ 0.05642065]
90 [ 1.46225858  1.56017959] [ 0.0565144]
Coefficients of tensorflow (input should be standardized): K=[ 1.46252561  1.56045783], b=[ 0.05655487]
Coefficients of tensorflow (raw input): K=[ 0.14831361  0.15888004], b=[-16.26265144]
------------------------------------------------
We solve this binary classification problem again from the viewpoint of multinomial classification
------------------------------------------------
Coefficients of sklearn: K=[[ 0.07417039  0.07945423]], b=-8.189372
A little bit difference at first glance. What about multiply them with 2?
0 [-0.33699557  0.33699557 -0.34786162  0.34786162] [  6.05359674e-09  -6.05359674e-09]
10 [-0.68416572  0.68416572 -0.72988117  0.72988123] [ 0.02157043 -0.02157041]
20 [-0.72234094  0.72234106 -0.77087188  0.77087194] [ 0.02693938 -0.02693932]
30 [-0.72958517  0.72958535 -0.7784785   0.77847856] [ 0.02802362 -0.02802352]
40 [-0.73103166  0.73103184 -0.77998811  0.77998811] [ 0.02824244 -0.02824241]
50 [-0.73132294  0.73132324 -0.78029168  0.78029174] [ 0.02828659 -0.02828649]
60 [-0.73138171  0.73138207 -0.78035289  0.78035301] [ 0.02829553 -0.02829544]
70 [-0.73139352  0.73139393 -0.78036523  0.78036535] [ 0.02829732 -0.0282972 ]
80 [-0.73139596  0.73139632 -0.78036767  0.78036791] [ 0.02829764 -0.02829755]
90 [-0.73139644  0.73139679 -0.78036815  0.78036839] [ 0.02829781 -0.02829765]
Coefficients of tensorflow (input should be standardized): K=[-0.7313965   0.73139679 -0.78036827  0.78036839], b=[ 0.02829777 -0.02829769]
Coefficients of tensorflow (raw input): K=[-0.07417037  0.07446811 -0.07913655  0.07945422], b=[ 8.1893692  -8.18937111]
思考

对于逻辑回归,损失函数比线性回归模型复杂了一些。首先需要通过sigmoid函数,将线性回归的结果转化为0至1之间的概率值。然后写出每个样本的发生概率(似然),那么所有样本的发生概率就是每个样本发生概率的乘积。为了求导方便,我们对所有样本的发生概率取对数,保持其单调性的同时,可以将连乘变为求和(加法的求导公式比乘法的求导公式简单很多)。对数极大似然估计方法的目标函数是最大化所有样本的发生概率;机器学习习惯将目标函数称为损失,所以将损失定义为对数似然的相反数,以转化为极小值问题。

我们提到逻辑回归时,一般指的是二分类问题;然而这套思想是可以很轻松就拓展为多分类问题的,在机器学习领域一般称为softmax回归模型。本文的作者是统计学与计量经济学背景,因此一般将其称为MNL模型。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/38335.html

相关文章

  • ApacheCN 人工智能知识树 v1.0

    摘要:贡献者飞龙版本最近总是有人问我,把这些资料看完一遍要用多长时间,如果你一本书一本书看的话,的确要用很长时间。为了方便大家,我就把每本书的章节拆开,再按照知识点合并,手动整理了这个知识树。 Special Sponsors showImg(https://segmentfault.com/img/remote/1460000018907426?w=1760&h=200); 贡献者:飞龙版...

    刘厚水 评论0 收藏0
  • 深度学习-初识

    摘要:深度学习这几年很火,所以,从今天起涉足深度学习,为未来学习,注本博文为慕课课程学习笔记。用完后,可以通过发出以下命令来停用此环境提示符将恢复为您的默认提示符由所定义。本机器激活命令使用安装多层神经网络的实战神经元的实现 深度学习这几年很火,所以,从今天起涉足深度学习,为未来学习,注本博文为慕课课程学习笔记。 一、入门基本概念 机器学习简介 机器学习:无序数据转化为价值的方法机器学习价值...

    Jackwoo 评论0 收藏0
  • 深度学习-初识

    摘要:深度学习这几年很火,所以,从今天起涉足深度学习,为未来学习,注本博文为慕课课程学习笔记。用完后,可以通过发出以下命令来停用此环境提示符将恢复为您的默认提示符由所定义。本机器激活命令使用安装多层神经网络的实战神经元的实现 深度学习这几年很火,所以,从今天起涉足深度学习,为未来学习,注本博文为慕课课程学习笔记。 一、入门基本概念 机器学习简介 机器学习:无序数据转化为价值的方法机器学习价值...

    shenhualong 评论0 收藏0
  • 深度学习-初识

    摘要:深度学习这几年很火,所以,从今天起涉足深度学习,为未来学习,注本博文为慕课课程学习笔记。用完后,可以通过发出以下命令来停用此环境提示符将恢复为您的默认提示符由所定义。本机器激活命令使用安装多层神经网络的实战神经元的实现 深度学习这几年很火,所以,从今天起涉足深度学习,为未来学习,注本博文为慕课课程学习笔记。 一、入门基本概念 机器学习简介 机器学习:无序数据转化为价值的方法机器学习价值...

    jerry 评论0 收藏0
  • TensorFlow学习笔记(2):多元线性回归

    摘要:前言本文使用训练多元线性回归模型,并将其与做比较。在这个例子中,变量一个是面积,一个是房间数,量级相差很大,如果不归一化,面积在目标函数和梯度中就会占据主导地位,导致收敛极慢。 前言 本文使用tensorflow训练多元线性回归模型,并将其与scikit-learn做比较。数据集来自Andrew Ng的网上公开课程Deep Learning 代码 #!/usr/bin/env pyth...

    ky0ncheng 评论0 收藏0

发表评论

0条评论

wendux

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<