摘要:是自带的一个可视化工具。本文在学习笔记的基础上修改少量代码,以探索的使用方法。添加标量统计结果。执行后,将返回结果传递给方法即可。效果首先是,显示取值范围更细节的取值概率信息在里,如下双击后,可查看下一层级的详细信息
前言
本文基于TensorFlow官网How-Tos的Visualizing Learning和Graph Visualization写成。
TensorBoard是TensorFlow自带的一个可视化工具。本文在学习笔记(4)的基础上修改少量代码,以探索TensorBoard的使用方法。
代码# -*- coding=utf-8 -*-
# @author: 陈水平
# @date: 2017-02-09
# @description: implement a softmax regression model upon MNIST handwritten digits
# @ref: http://yann.lecun.com/exdb/mnist/
import gzip
import struct
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
import tensorflow as tf
# MNIST data is stored in binary format,
# and we transform them into numpy ndarray objects by the following two utility functions
def read_image(file_name):
with gzip.open(file_name, "rb") as f:
buf = f.read()
index = 0
magic, images, rows, columns = struct.unpack_from(">IIII" , buf , index)
index += struct.calcsize(">IIII")
image_size = ">" + str(images*rows*columns) + "B"
ims = struct.unpack_from(image_size, buf, index)
im_array = np.array(ims).reshape(images, rows, columns)
return im_array
def read_label(file_name):
with gzip.open(file_name, "rb") as f:
buf = f.read()
index = 0
magic, labels = struct.unpack_from(">II", buf, index)
index += struct.calcsize(">II")
label_size = ">" + str(labels) + "B"
labels = struct.unpack_from(label_size, buf, index)
label_array = np.array(labels)
return label_array
print "Start processing MNIST handwritten digits data..."
train_x_data = read_image("MNIST_data/train-images-idx3-ubyte.gz")
train_x_data = train_x_data.reshape(train_x_data.shape[0], -1).astype(np.float32)
train_y_data = read_label("MNIST_data/train-labels-idx1-ubyte.gz")
test_x_data = read_image("MNIST_data/t10k-images-idx3-ubyte.gz")
test_x_data = test_x_data.reshape(test_x_data.shape[0], -1).astype(np.float32)
test_y_data = read_label("MNIST_data/t10k-labels-idx1-ubyte.gz")
train_x_minmax = train_x_data / 255.0
test_x_minmax = test_x_data / 255.0
# Of course you can also use the utility function to read in MNIST provided by tensorflow
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
# train_x_minmax = mnist.train.images
# train_y_data = mnist.train.labels
# test_x_minmax = mnist.test.images
# test_y_data = mnist.test.labels
# We evaluate the softmax regression model by sklearn first
eval_sklearn = False
if eval_sklearn:
print "Start evaluating softmax regression model by sklearn..."
reg = LogisticRegression(solver="lbfgs", multi_class="multinomial")
reg.fit(train_x_minmax, train_y_data)
np.savetxt("coef_softmax_sklearn.txt", reg.coef_, fmt="%.6f") # Save coefficients to a text file
test_y_predict = reg.predict(test_x_minmax)
print "Accuracy of test set: %f" % accuracy_score(test_y_data, test_y_predict)
eval_tensorflow = True
batch_gradient = False
def variable_summaries(var):
with tf.name_scope("summaries"):
mean = tf.reduce_mean(var)
tf.summary.scalar("mean", mean)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar("stddev", stddev)
tf.summary.scalar("max", tf.reduce_max(var))
tf.summary.scalar("min", tf.reduce_min(var))
tf.summary.histogram("histogram", var)
if eval_tensorflow:
print "Start evaluating softmax regression model by tensorflow..."
# reformat y into one-hot encoding style
lb = preprocessing.LabelBinarizer()
lb.fit(train_y_data)
train_y_data_trans = lb.transform(train_y_data)
test_y_data_trans = lb.transform(test_y_data)
x = tf.placeholder(tf.float32, [None, 784])
with tf.name_scope("weights"):
W = tf.Variable(tf.zeros([784, 10]))
variable_summaries(W)
with tf.name_scope("biases"):
b = tf.Variable(tf.zeros([10]))
variable_summaries(b)
with tf.name_scope("Wx_plus_b"):
V = tf.matmul(x, W) + b
tf.summary.histogram("pre_activations", V)
with tf.name_scope("softmax"):
y = tf.nn.softmax(V)
tf.summary.histogram("activations", y)
y_ = tf.placeholder(tf.float32, [None, 10])
with tf.name_scope("cross_entropy"):
loss = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
tf.summary.scalar("cross_entropy", loss)
with tf.name_scope("train"):
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
with tf.name_scope("evaluate"):
with tf.name_scope("correct_prediction"):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope("accuracy"):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter("log/train", sess.graph)
test_writer = tf.summary.FileWriter("log/test")
if batch_gradient:
for step in range(300):
sess.run(train, feed_dict={x: train_x_minmax, y_: train_y_data_trans})
if step % 10 == 0:
print "Batch Gradient Descent processing step %d" % step
print "Finally we got the estimated results, take such a long time..."
else:
for step in range(1000):
if step % 10 == 0:
summary, acc = sess.run([merged, accuracy], feed_dict={x: test_x_minmax, y_: test_y_data_trans})
test_writer.add_summary(summary, step)
print "Stochastic Gradient Descent processing step %d accuracy=%.2f" % (step, acc)
else:
sample_index = np.random.choice(train_x_minmax.shape[0], 100)
batch_xs = train_x_minmax[sample_index, :]
batch_ys = train_y_data_trans[sample_index, :]
summary, _ = sess.run([merged, train], feed_dict={x: batch_xs, y_: batch_ys})
train_writer.add_summary(summary, step)
np.savetxt("coef_softmax_tf.txt", np.transpose(sess.run(W)), fmt="%.6f") # Save coefficients to a text file
print "Accuracy of test set: %f" % sess.run(accuracy, feed_dict={x: test_x_minmax, y_: test_y_data_trans})
思考
主要修改点有:
Summary:所有需要在TensorBoard上展示的统计结果。
tf.name_scope():为Graph中的Tensor添加层级,TensorBoard会按照代码指定的层级进行展示,初始状态下只绘制最高层级的效果,点击后可展开层级看到下一层的细节。
tf.summary.scalar():添加标量统计结果。
tf.summary.histogram():添加任意shape的Tensor,统计这个Tensor的取值分布。
tf.summary.merge_all():添加一个操作,代表执行所有summary操作,这样可以避免人工执行每一个summary op。
tf.summary.FileWrite:用于将Summary写入磁盘,需要制定存储路径logdir,如果传递了Graph对象,则在Graph Visualization会显示Tensor Shape Information。执行summary op后,将返回结果传递给add_summary()方法即可。
效果 Visualizing Learning Scalar Histogram首先是Distribution,显示取值范围:
更细节的取值概率信息在Historgram里,如下:
Graph Visualization双击train后,可查看下一层级的详细信息:
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/38410.html
摘要:输入采用占位符,模型接收任意长度向量,随时间计算数据流图所有输出总和,采用名称作用域合理划分数据流图,每次运行保存数据流图输出累加均值到磁盘。与交换工作流分开,独立名称作用域包含对象,存储输出累加和,记录数据流图运行次数。 输入采用占位符,模型接收任意长度向量,随时间计算数据流图所有输出总和,采用名称作用域合理划分数据流图,每次运行保存数据流图输出、累加、均值到磁盘。 [None]代表...
阅读 3142·2023-04-25 18:46
阅读 990·2021-11-19 09:40
阅读 2906·2021-09-28 09:36
阅读 3731·2021-09-10 11:11
阅读 3790·2019-08-30 15:55
阅读 2111·2019-08-30 15:54
阅读 2873·2019-08-29 16:16
阅读 3845·2019-08-29 15:08