资讯专栏INFORMATION COLUMN

TensorFlow Object Detection API Custom Object Hang

fevin / 582人阅读

摘要:

TensorFlow Object Detection API Hangs On — Training and Evaluating using Custom Object Detector
*The links to all files updated and the GitHub repo address added.
First of All

Install TensorFlow (I am using TensorFlow CPU this time. In the next post, I will explain how to install TensorFlow GPU)

https://www.tensorflow.org/in...

Clone the TensorFlow object detection repository

https://github.com/tensorflow...

Install the Object Detection API package.

Motivation
Currently, I am in charge of an ad-hoc project that used machine vision to detect whether a person is wearing safety goggles. I researched online and tried myself, and it goes well. Then I am thinking of sharing my learning and obstacles as not many people talk about how to deploy the custom trained model. In this post, I will explain all the necessary steps to train your own detector. The process of doing it is shown below:

Project Structure

images/ — our dataset of images.

labels/ - labels for our dataset.

data/ — records and .csv files.

train/ — our trained model.

eval/ — evaluation results of trained model.

output/ - inference graph

App/ - deployment of application.

Creating Dataset

You need to prepare images as many as you can for training, but at least need to be more than 5 images per frame. Then hand-labeled them manually with LabelImg. LabelImg is a graphical image annotation tool that is written in Pyandn and uses Qt for the graphical interface. It’s super easy to use and the annotations are saved as XML files in the PASCAL VOC format to be used by the generate_tfrecord.py script.

After labeling the images, use the xml_to_csv.py script that converts the XML files to a .csv file and then created the TFRecords. I used 80/20 rule for training and testing.

Tensorflow Object Detection API uses the TFRecord file format, you need to convert our dataset to this file format. There are several options to generate the TFRecord files. Either you have a dataset that has a similar structure to the PASCAL VOC dataset or the Oxford Pet dataset, then they have ready-made scripts for this case (see create_pascal_tf_record.py and create_pet_tfd_record.py). If you don’t have one of those structures you need to write your own script to generate the TFRecords. I used a custom made script for this!

After labeling the images using LabelImg, labeled xml files will be generated. Run the xml_to_csv.py, record down the number of Test Cases printed out in the console. Then generate TF Records for both training and testing using generate_tfrecord.py.

To generate train.record file use the code as shown below:

python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=data/train.record --image_dir=images

To generate test.record file use the code as shown below:

python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=data/test.record --image_dir=images
Training the model

Once our records files are ready, you are almost ready to train the model.

Firstly, you need to decide the pre-trained model to be used. There’s a tradeoff between detection speed and accuracy, higher the speed lower the accuracy and vice versa. After some trails, I am using faster_rcnn_inception_v2_coco for my project.

After deciding the model to be used, you will need an object detection training pipeline. They also provide sample config files on the repo. For my training, I will download faster_rcnn_inception_v2_coco.config.

Then you will need the dataset"s (TFRecord files) corresponding label map. Example of how to create label maps can be found here. Here is also my label map which was very simple since I had only two classes, make a new file pascal_label_map.pbtxt which looks like this:

item {
  id: 1
  name: "pos"
}

item {
  id: 2
  name: "neg"
}

It is important to configure the faster_rcnn_inception_v2_coco.config file. You need to change it based on your configurations.

Change the number of classes in the file according to our requirement.

#before
num_classes: 90
#After
num_classes: 2

Change the total number of steps, depends on the complexity.

#before
num_steps: 200000
#After
num_steps: 1000

If your PC does not have good GPU then you need to decrease the batch_size.

#before
batch_size: 24
#After
batch_size: 1

Give the path to downloaded model i.e faster_rcnn_inception_v2_coco, the model we decided to be used.

#before
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
#after
fine_tune_checkpoint: "faster_rcnn_inception_v2_coco/model.ckpt"

Give the path to train.record file.

#before
train_input_reader: {  
tf_record_input_reader {   
input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
#after
train_input_reader: {  
tf_record_input_reader {   
input_path: "data/train.record"
}
label_map_path: "data/pascal_label_map.pbtxt"
}

Give path for test.record file

#before
eval_input_reader: {  
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record" 
 }
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"  shuffle: false
num_readers: 1}
#after
eval_input_reader: {  
tf_record_input_reader {
input_path: "data/test.record" 
 }
label_map_path: "data/pascal_label_map.pbtxt"  
shuffle: false
num_readers: 1}

Now, copy train.py from models/research/object-detection directory of the TensorFlow object detection repo.

python train.py --logtostderr --train_dir=train/ --pipeline_config_path=faster_rcnn_inception_v2_coco.config

If everything goes right, you will see the loss at a particular step.

Training can be either done locally or on the cloud (AWS, Google Cloud etc.). If you have a good GPU at home then you can do it locally otherwise I would recommend going with the cloud. In my case, a 3.8G Hz i5 processor takes about 2 hours for the training, still acceptable.

Evaluating the model

The final step is to evaluate the trained model saved in train/ directory. You need to edit the faster_rcnn_inception_v2_coco.config file change to num_examples to the number of the Test Cases that be printed out of xml_to_csv.py.

eval_config: {
  num_examples: 31
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

You need to copy the eval.py file from the repo and evaluate using the following command:

python eval.py --logtostderr --pipeline_config_path=data/faster_rcnn_inception_v2_coco.config --checkpoint_dir=train/ --eval_dir=eval/

This will save the eval results in eval/ directory. To visualize the results we will use tensorboard.

To visualize the eval results

tensorboard --logdir=eval/

To visualize the training results

tensorboard --logdir=training/

Open the link in a browser and under Images tag you can see the results.

Exporting the model

Copy the exporter.py and export_inference_graph.py from the object detection repo and run the following command, the number of steps depends on your configuration:

python export_inference_graph.py --pipeline_config_path=faster_rcnn_inception_v2_coco.config --output_directory=output --trained_checkpoint_prefix=train/model.ckpt-[NUMBER_OF_STEPS]
Deployment of the model

You need to copy the utils folder from the object detection repo to the App folder and create a app.py file.

#app.py

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

import cv2
import time

from object_detection.utils import ops as utils_ops

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")

if StrictVersion(tf.__version__) < StrictVersion("1.9.0"):
    raise ImportError("Please upgrade your TensorFlow installation to v1.9.* or later!")

DIR = "[The Root Folder Path]"

from utils import label_map_util

from utils import visualization_utils as vis_util

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = os.path.join(DIR, "output", "frozen_inference_graph.pb")

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join(DIR, "data/pascal_label_map.pbtxt")

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, "rb") as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name="")
        sess = tf.Session()
        # Get handles to input and output tensors
        ops = tf.get_default_graph().get_operations()
        all_tensor_names = {
            output.name for op in ops for output in op.outputs}
        tensor_dict = {}
        for key in [
            "num_detections", "detection_boxes", "detection_scores",
            "detection_classes", "detection_masks"
        ]:
            tensor_name = key + ":0"
            if tensor_name in all_tensor_names:
                tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
                    tensor_name)
        if "detection_masks" in tensor_dict:
            # The following processing is only for single image
            detection_boxes = tf.squeeze(
                tensor_dict["detection_boxes"], [0])
            detection_masks = tf.squeeze(
                tensor_dict["detection_masks"], [0])
            # Reframe is required to translate mask from box coordinates to
            # image coordinates and fit the image size.
            real_num_detection = tf.cast(
                tensor_dict["num_detections"][0], tf.int32)
            detection_boxes = tf.slice(detection_boxes, [0, 0], [
                                       real_num_detection, -1])
            detection_masks = tf.slice(detection_masks, [0, 0, 0], [
                                       real_num_detection, -1, -1])
            detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                detection_masks, detection_boxes, image.shape[0], image.shape[1])
            detection_masks_reframed = tf.cast(
                tf.greater(detection_masks_reframed, 0.5), tf.uint8)
            # Follow the convention by adding back the batch dimension
            tensor_dict["detection_masks"] = tf.expand_dims(
                detection_masks_reframed, 0)
        image_tensor = tf.get_default_graph().get_tensor_by_name("image_tensor:0")

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def run_inference_for_single_image(image):
    # Run inference
    output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)})

    # all outputs are float32 numpy arrays, so convert types as
    # appropriate
    output_dict["num_detections"] = int(
        output_dict["num_detections"][0])
    output_dict["detection_classes"] = output_dict[
        "detection_classes"][0].astype(np.uint8)
    output_dict["detection_boxes"] = output_dict["detection_boxes"][0]
    output_dict["detection_scores"] = output_dict[
        "detection_scores"][0]
    if "detection_masks" in output_dict:
        output_dict["detection_masks"] = output_dict[
            "detection_masks"][0]
    return output_dict

cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
time.sleep(2)

while(True):
    start = time.time()
    ret, frame = cap.read()
    output_dict = run_inference_for_single_image(frame)
    vis_util.visualize_boxes_and_labels_on_image_array(
        frame,
        output_dict["detection_boxes"],
        output_dict["detection_classes"],
        output_dict["detection_scores"],
        category_index,
        instance_masks=output_dict.get("detection_masks"),
        use_normalized_coordinates=True,
        line_thickness=8)

    cv2.imshow("frame", frame)
    end = time.time()
    print("Time Taken: %f" % (end - start))

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()
You can find the complete project in my repo.

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/43123.html

相关文章

  • tensorflow和opencv

    当涉及到计算机视觉和深度学习时,TensorFlow和OpenCV是两个最受欢迎的编程框架。TensorFlow是一个由Google开发的深度学习框架,而OpenCV是一个广泛使用的计算机视觉库。本文将探讨如何使用这两个框架来实现一些常见的计算机视觉和深度学习任务。 1. 安装和设置 首先,您需要安装TensorFlow和OpenCV。TensorFlow可以通过pip install ten...

    reclay 评论0 收藏1207
  • 千呼万唤始出来,OpenCV 4.0正式发布!

    摘要:目前,支持尚未完成仅支持加载编码的和,还未支持编码。部分支持对象检测网络的版本缺少一些提供矩形列表的最终图层。而且,此更改也已添加到分支。请注意,仅在英特尔上进行测试,因此仍需要额外的。为了使实时采集处理有高效,在模块中更新了支持。 OpenCV 4.0 正式版来啦!虽然官网还没更新,但Github已经放出来了!重回英特尔的OpenCV终于迎来一次大版本更新,增加了诸多新特性,快来一起看看吧...

    nifhlheimr 评论0 收藏0
  • Learning Deep Learning(学习深度学习)

    摘要:如果你对算法实战感兴趣,请快快关注我们吧。加入实战微信群,实战群,算法微信群,算法群。 作者:chen_h微信号 & QQ:862251340微信公众号:coderpai简书地址:https://www.jianshu.com/p/e98... Learning Deep Learning(学习深度学习) There are lots of awesome reading lists...

    newtrek 评论0 收藏0
  • 《DeepLearning.ai 深度学习笔记》发布,黄海广博士整理

    摘要:在这堂课中,学生将可以学习到深度学习的基础,学会构建神经网络,包括和等。课程中也会有很多实操项目,帮助学生更好地应用自己学到的深度学习技术,解决真实世界问题。 深度学习入门首推课程就是吴恩达的深度学习专项课程系列的 5 门课。该专项课程最大的特色就是内容全面、通俗易懂并配备了丰富的实战项目。今天,给大家推荐一份关于该专项课程的核心笔记!这份笔记只能用两个字形容:全面! showImg(...

    wenhai.he 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<