摘要:在排好序的单词列表中查找某个单词优化和的初始化,从开始,这样避免只有时的优化减少了内存溢出的风险优化循环时,。
直观定义
迭代法(Iterative Method),简单来说,其实就是不断地用旧的变量值,递推计算新的变量值。循环。
具体应用
求数值的精确/近似解
二分法(Bisection method)
牛顿迭代法(Newton’s method)
在一定范围内查找目标值
二分查找
机器学习中的迭代算法
K-均值算法(K-means clustering)
PageRank 的马尔科夫链(Markov chain)
梯度下降法(Gradient descent)
应用详解求方程的精确/近似解
二分法
#"""计算某个给定正整数 n(n>1)的平方根,如果不使用编程语言"""
# delta_threshold:允许的误差的阈值
# max_try:最大尝试次数
def get_squre_root(n,delta_threshold=0.000000000000001,max_try=1000):
if n <= 1:
return -1
min = 1.0
n = float(n)
max = n
mid = (max+min)/2.0
print(mid)
for i in range(max_try):
_n = mid * mid
delta = _n-n
if delta == 0:
print("精确值")
return mid
abs_delta = abs(delta)
if abs_delta <= delta_threshold:
print("近似值")
return mid
else:
if delta>0:
max = mid
else:
min = mid
mid = (max+min)/2.0
print(mid)
return min
get_squre_root(16)
牛顿迭代法
之后补充
查找匹配记录
快速查找记录,除了用字典,还可以用著名的 二分查找法(前提是有序)。这也是迭代逼近的典型案例。
二分查找,第一版
#在排好序的单词列表中查找某个单词
#@ param words_list,target_word
#@ return bool
def search(words_list,target_word):
if not words_list:
return False
min = 1
max = len(words_list)
while True:
mid = (max + min)/2
mid_word = words_list[mid]
if target_word == mid_word:
print(mid)
return True
elif target_word > mid_word:
min = mid
else:
max = mid
if max <= min:
return False
return False
# words_list = ["i","love","my","wife","than","myself"s","body","."]
words_list = ["e"]
words_list = sorted(words_list)
print(words_list)
print(search(words_list,"i"))
二分查找,改完bug后,第二版
#在排好序的单词列表中查找某个单词
#@ param words_list,target_word
#@ return bool
# 优化1: min和max的初始化,从0开始,这样避免只有len(list)=1时的bug
# 优化2: mid = min + (max - min)/2 ,减少了内存溢出的风险
def search(words_list,target_word):
if not words_list:
return False
min = 0
max = len(words_list) - 1
while True:
mid = min + (max - min)/2
mid_word = words_list[mid]
if target_word == mid_word:
print(mid)
return True
elif target_word > mid_word:
min = mid
else:
max = mid
if max <= min:
return False
return False
words_list = ["i","love","my","wife","than","myself"s","body","."]
# words_list = ["e"]
words_list = sorted(words_list)
print(words_list)
print(search(words_list,"i"))
二分查找,再改bug后,第三版(应该没bug了吧。。)
#在排好序的单词列表中查找某个单词
#@ param words_list,target_word
#@ return bool
# 优化1: min和max的初始化,从0开始,这样避免只有len(list)=1时的bug
# 优化2: mid = min + (max - min)/2 ,减少了内存溢出的风险
# 优化3: 循环时,min = mid + 1。和max = mid - 1。减少重复检查边界
# 优化4: 跳出循环的条件改为max < min,避免最后一步出现max=min=target的潜在bug
def search(words_list,target_word):
if not words_list:
return False
min = 0
max = len(words_list) - 1
while True:
mid = min + (max - min)/2
mid_word = words_list[mid]
if target_word == mid_word:
print(mid)
return True
elif target_word > mid_word:
min = mid + 1
else:
max = mid - 1
if max < min:
print(max)
return False
return False
words_list = ["i","love","my","wife","than","myself"s","body","."]
# words_list = ["e"]
words_list = sorted(words_list)
print(words_list)
print(search(words_list,"i"))
思考
迭代法的特点是“分而治之”,不断重复一个相似的行为,一步步地缩小目标范围。计算机很适合处理这种重复的工作,而人类并不擅长,所以有时候不敏感。在编程的时候,可以特意留意这一差异。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/43940.html
摘要:在这里我分享下我个人入门机器学习的经历,希望能对大家能有所帮助。相关学习链接,,入门后的体验在入门了机器学习之后,在实际工作中,绝大多数的情况下你并不需要去创造一个新的算法。 机器学习在很多眼里就是香饽饽,因为机器学习相关的岗位在当前市场待遇不错,但同时机器学习在很多人面前又是一座大山,因为发现它太难学了。在这里我分享下我个人入门机器学习的经历,希望能对大家能有所帮助。 PS:这篇文章...
阅读 2409·2021-09-07 10:14
阅读 1690·2019-08-30 15:53
阅读 2462·2019-08-30 12:43
阅读 3078·2019-08-29 16:37
阅读 926·2019-08-26 13:29
阅读 2196·2019-08-26 13:28
阅读 640·2019-08-23 18:33
阅读 3879·2019-08-23 16:09