资讯专栏INFORMATION COLUMN

Java常用的八种排序算法与代码实现精解

2501207950 / 2863人阅读

摘要:直接插入排序的算法重点在于寻找插入位置。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。简单选择排序常用于取序列中最大最小的几个数时。将新构成的所有的数的十位数取出,按照十位数进行排序,构成一个序列。

1.直接插入排序

直接插入排序算法是排序算法中最简单的,但在寻找插入位置时的效率不高。基本思想就是将一个待排序的数字在已经排序的序列中寻找找到一个插入位置进行插入。直接插入排序的算法重点在于寻找插入位置。
例:
原有序表:(9 15 23 28 37) 20
找插入位置 : (9 15 ^ 23 28 37) 20
新有序表: (9 15 20 23 28 37)

2.希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。

3.简单选择排序

常用于取序列中最大最小的几个数时。
(如果每次比较都交换,那么就是交换排序;如果每次比较完一个循环再交换,就是简单选择排序。)
遍历整个序列,将最小的数放在最前面。
遍历剩下的序列,将最小的数放在最前面。
重复第二步,直到只剩下一个数。

4.堆排序

对简单选择排序的优化。
将序列构建成大顶堆。
将根节点与最后一个节点交换,然后断开最后一个节点。
重复第一、二步,直到所有节点断开。

public void heapSort(int[] a) {
    System.out.println("开始排序");
    int arrayLength = a.length;
    //循环建堆
    for (int i = 0; i < arrayLength - 1; i++) {
        //建堆
        buildMaxHeap(a, arrayLength - 1 - i);
        //交换堆顶和最后一个元素
        swap(a, 0, arrayLength - 1 - i);
        System.out.println(Arrays.toString(a));
    }
}

private void swap(int[] data, int i, int j) {
    // TODO Auto-generated method stub
    int tmp = data[i];
    data[i] = data[j];
    data[j] = tmp;
}

//对data数组从0到lastIndex建大顶堆
private void buildMaxHeap(int[] data, int lastIndex) {
    // TODO Auto-generated method stub
    //从lastIndex处节点(最后一个节点)的父节点开始
    for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
        //k保存正在判断的节点
        int k = i;
        //如果当前k节点的子节点存在
        while (k * 2 + 1 <= lastIndex) {
            //k节点的左子节点的索引
            int biggerIndex = 2 * k + 1;
            //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
            if (biggerIndex < lastIndex) {
                //若果右子节点的值较大
                if (data[biggerIndex] < data[biggerIndex + 1]) {
                    //biggerIndex总是记录较大子节点的索引
                    biggerIndex++;
                }
            }
            //如果k节点的值小于其较大的子节点的值
            if (data[k] < data[biggerIndex]) {
                //交换他们
                swap(data, k, biggerIndex);
                //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
                k = biggerIndex;
            } else {
                break;
            }
        }
    }
}
5.冒泡排序

一般不用。
将序列中所有元素两两比较,将最大的放在最后面。
将剩余序列中所有元素两两比较,将最大的放在最后面。
重复第二步,直到只剩下一个数。

6.快速排序

要求时间最快时。
选择第一个数为p,小于p的数放在左边,大于p的数放在右边。
递归的将p左边和右边的数都按照第一步进行,直到不能递归。

7.归并排序

速度仅次于快排,内存少的时候使用,可以进行并行计算的时候使用。
选择相邻两个数组成一个有序序列。
选择相邻的两个有序序列组成一个有序序列。
重复第二步,直到全部组成一个有序序列。

public static void mergeSort(int[] numbers, int left, int right) {
    int t = 1;// 每组元素个数  
    int size = right - left + 1;
    while (t < size) {
        int s = t;// 本次循环每组元素个数  
        t = 2 * s;
        int i = left;
        while (i + (t - 1) < size) {
            merge(numbers, i, i + (s - 1), i + (t - 1));
            i += t;
        }
        if (i + (s - 1) < right)
            merge(numbers, i, i + (s - 1), right);
    }
}

private static void merge(int[] data, int p, int q, int r) {
    int[] B = new int[data.length];
    int s = p;
    int t = q + 1;
    int k = p;
    while (s <= q && t <= r) {
        if (data[s] <= data[t]) {
            B[k] = data[s];
            s++;
        } else {
            B[k] = data[t];
            t++;
        }
        k++;
    }
    if (s == q + 1)
        B[k++] = data[t++];
    else
        B[k++] = data[s++];
    System.arraycopy(B, p, data, p, r + 1 - p);
    
8.基数排序

用于大量数,很长的数进行排序时。
将所有的数的个位数取出,按照个位数进行排序,构成一个序列。
将新构成的所有的数的十位数取出,按照十位数进行排序,构成一个序列。

public void sort(int[] array) {
    //首先确定排序的趟数;    
    int max = array[0];
    for (int i = 1; i < array.length; i++) {
        if (array[i] > max) {
            max = array[i];
        }
    }
    int time = 0;
    //判断位数;    
    while (max > 0) {
        max /= 10;
        time++;
    }
    //建立10个队列;    
    List queue = new ArrayList();
    for (int i = 0; i < 10; i++) {
        ArrayList queue1 = new ArrayList();
        queue.add(queue1);
    }
    //进行time次分配和收集;    
    for (int i = 0; i < time; i++) {
        //分配数组元素;    
        for (int j = 0; j < array.length; j++) {
            //得到数字的第time+1位数;  
            int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
            ArrayList queue2 = queue.get(x);
            queue2.add(array[j]);
            queue.set(x, queue2);
        }
        int count = 0;//元素计数器;    
        //收集队列元素;    
        for (int k = 0; k < 10; k++) {
            while (queue.get(k).size() > 0) {
                ArrayList queue3 = queue.get(k);
                array[count] = queue3.get(0);
                queue3.remove(0);
                count++;
            }
        }
    }
}


文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/67014.html

相关文章

  • 八种常见排序算法细讲

    摘要:目录常见的八种排序常见的八种排序直接插入排序直接插入排序希尔排序希尔排序直接选择排序直接选择排序堆排序堆排序冒泡排序冒泡排序快速排序快速排序版本版本挖坑法挖坑法前后指针版前后指针版快速排序代码 目录 常见的八种排序 直接插入排序 希尔排序 直接选择排序 堆排序 冒泡排序  快速排序 hoar...

    hiyang 评论0 收藏0
  • Java 总结

    摘要:中的详解必修个多线程问题总结个多线程问题总结有哪些源代码看了后让你收获很多,代码思维和能力有较大的提升有哪些源代码看了后让你收获很多,代码思维和能力有较大的提升开源的运行原理从虚拟机工作流程看运行原理。 自己实现集合框架 (三): 单链表的实现 自己实现集合框架 (三): 单链表的实现 基于 POI 封装 ExcelUtil 精简的 Excel 导入导出 由于 poi 本身只是针对于 ...

    caspar 评论0 收藏0
  • java篇 - 收藏集 - 掘金

    摘要:进阶多线程开发关键技术后端掘金原创文章,转载请务必将下面这段话置于文章开头处保留超链接。关于中间件入门教程后端掘金前言中间件 Java 开发人员最常犯的 10 个错误 - 后端 - 掘金一 、把数组转成ArrayList 为了将数组转换为ArrayList,开发者经常... Java 9 中的 9 个新特性 - 后端 - 掘金Java 8 发布三年多之后,即将快到2017年7月下一个版...

    OpenDigg 评论0 收藏0
  • 博客 - 收藏集 - 掘金

    摘要:技术之类加载机制掘金类加载机制是语言的一大亮点,使得类可以被动态加载到虚拟机中。玩转仿探探卡片式滑动效果掘金讲起本篇博客的历史起源,估计有一段历史了。 Java 技术之类加载机制 - Android - 掘金类加载机制是 Java 语言的一大亮点,使得 Java 类可以被动态加载到 Java 虚拟机中。 这次我们抛开术语和概念,从例子入手,由浅入深地讲解 Java 的类加载机制。 本文...

    Shimmer 评论0 收藏0
  • 博客 - 收藏集 - 掘金

    摘要:技术之类加载机制掘金类加载机制是语言的一大亮点,使得类可以被动态加载到虚拟机中。玩转仿探探卡片式滑动效果掘金讲起本篇博客的历史起源,估计有一段历史了。 Java 技术之类加载机制 - Android - 掘金类加载机制是 Java 语言的一大亮点,使得 Java 类可以被动态加载到 Java 虚拟机中。 这次我们抛开术语和概念,从例子入手,由浅入深地讲解 Java 的类加载机制。 本文...

    The question 评论0 收藏0

发表评论

0条评论

2501207950

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<