资讯专栏INFORMATION COLUMN

V8 Object 内存结构与属性访问详解

loonggg / 2684人阅读

摘要:内存结构与属性访问详解从属于笔者的前端入门与工程实践,推荐阅读我的前端之路工具化与工程化。内存结构与属性访问上世纪九十年代,随着网景浏览器的发行,首次进入人们的视线。

V8 Object 内存结构与属性访问详解从属于笔者的Web 前端入门与工程实践,推荐阅读2016-我的前端之路:工具化与工程化。更多关于 JavaScript 引擎文章参考这里。

V8 Object 内存结构与属性访问

上世纪九十年代,随着网景浏览器的发行,JavaScript 首次进入人们的视线。之后随着 AJAX 的大规模应用与富客户端、单页应用时代的到来,JavaScript 在 Web 开发中占据了越来越重要的地位。在早期的 JavaScript 引擎中,性能越发成为了开发网页应用的瓶颈。而 V8 引擎设计的目标就是为了保证大型 JavaScript 应用的执行效率,在很多测试中可以明显发现 V8 的性能优于 JScript (Internet Explorer), SpiderMonkey (Firefox), 以及 JavaScriptCore(Safari). 根据 V8 的官方文档介绍,其主要是从属性访问、动态机器码生成以及高效的垃圾回收这三个方面着手性能优化。Obejct 当属 JavaScript 最重要的数据类型之一,本文我们对其内部结构进行详细阐述。其继承关系图如下所示:

在 V8 中新分配的 JavaScript 对象结构如下所示:

[ class / map ] -> ... ; 指向内部类
[ properties  ] -> [empty array]
[ elements    ] -> [empty array] ; 数值类型名称的属性
[ reserved #1 ] -
[ reserved #2 ]  |
[ reserved #3 ]  }- in object properties,即预分配的内存空间
...............  |
[ reserved #N ] -/

在创建新的对象时,V8 会创建某个预分配的内存区域来存放所谓的 in-object 属性,预分配区域的大小由构造函数中的参数数目决定(this.field = expr)。当你打算向对象中添加某个新属性时,V8 首先会尝试放入所谓的 in-order 槽位中,当 in-object 槽位过载之后,V8 会尝试将新的属性添加到 out-of-object 属性列表。而属性名与属性下标的映射关系即存放在所谓隐藏类中,譬如{ a: 1, b: 2, c: 3, d: 4}对象的存储方式可能如下:

[ class       ] -> [a: in obj #1, b: in obj #2, c: out obj #1, d: out obj #2]
[ properties  ] -> [  3  ][  4  ] ; this is linear array
[ elements    ]    
[ 1           ]
[ 2           ]

随着属性数目的增加,V8 会转回到传统的字典模式/哈希表模式:

[ class       ] -> [ OBJECT IS IN DICTIONARY MODE ]
[ properties  ] -> [a: 1, b: 2, c: 3, d: 4, e: 5] ; this is classical hash table
[ elements    ]  
Reference

V8 Design Elements

A tour of V8: object representation

Demystifying v8 and JavaScript Performance

V8 Docs:Object Class Reference

How does V8 manage the memory of object instances?

Property Name:属性名

作为动态语言,JavaScript 允许我们以非常灵活的方式来定义对象,譬如:

obj.prop
obj["prop"]

参照 JavaScript 定义规范中的描述,属性名恒为字符串,即使你使用了某个非字符串的名字,也会隐式地转化为字符串类型。譬如你创建的是个数组,以数值下标进行访问,然而 V8 还是将其转化为了字符串再进行索引,因此以下的方式就会获得相同的效果:

obj[1];    //
obj["1"];  // names for the same property
obj[1.0];  //

var o = { toString: function () { return "-1.5"; } };

obj[-1.5];  // also equivalent
obj[o];     // since o is converted to string

而 JavaScript 中的 Array 只是包含了额外的length属性的对象而已,length会返回当前最大下标加一的结果(此时字符串下标会被转化为数值类型计算):

var a = new Array();
a[100] = "foo";
a.length;  //101
a[undefined] = "a";
a.length; //0

Function本质上也是对象,只不过length属性会返回参数的长度而已:

> a = ()=>{}
[Function: a]
> a.length
0
> a = (b)=>{}
[Function: a]
> a.length
1
In-Object Properties & Fast Property Access:对象内属性与访问优化

作为动态类型语言,JavaScript 中的对象属性可以在运行时动态地增删,意味着整个对象的结构会频繁地改变。大部分 JavaScript 引擎倾向于使用字典类型的数据结构来存放对象属性( Object Properties),每次进行属性访问的时候引擎都需要在内层中先动态定位属性对应的下标地址然后读取值。这种方式实现上比较容易,但是会导致较差的性能表现。其他的类似于 Java 与 Smalltalk 这样的静态语言中,成员变量在编译阶段即确定了其在内存中的固定偏移地址,进行属性访问的时候只需要单指令从内存中加载即可。而 V8 则利用动态创建隐藏内部类的方式动态地将属性的内存地址记录在对象内,从而提升整体的属性访问速度。总结而言,每当为某个对象添加新的属性时,V8 会自动修正其隐藏内部类。我们先通过某个实验来感受下隐藏类的存在:

var PROPERTIES = 10000000;
var o = {};

var start = +new Date;

for (var i = 0; i < PROPERTIES; i++) {
  o[i] = i;
}

console.log(+new Date - start);

function O(size) {
  for (var i = 0; i < size; i++) {
    this[i] = null;
  }
}

var o = new O(PROPERTIES);

var start = +new Date;

for (var i = 0; i < PROPERTIES; i++) {
  o[i] = i;
}

console.log(+new Date - start);

class OClass {

    constructor(size){
        for (var i = 0; i < size; i++) {
            this[i] = null;
        }
    }

}

var o = new OClass(PROPERTIES);

var start = +new Date;

for (var i = 0; i < PROPERTIES; i++) {
  o[i] = i;
}

console.log(+new Date - start);

该程序的执行结果如下:

// Babel 下结果
385
37
49
// Chrome 下结果
416
32
31

第一种实现中,每次为对象o设置新的属性时,V8 都会创建新的隐藏内部类(内部称为 Map)来存储新的内存地址以优化属性查找速度。而第二种实现时,我们在创建新的对象时即初始化了内部类,这样在赋值属性时 V8 以及能够高性能地定位这些属性。第三种实现则是用的 ES6 Class,在纯正的 V8 下性能最好。接下来我们具体阐述下隐藏类的工作原理,假设我们定义了描述点的函数:

function Point(x, y) {
  this.x = x;
  this.y = y;
}

当我们执行new Point(x,y)语句时,V8 会创建某个新的Point对象。创建的过程中,V8 首先会创建某个所谓C0的隐藏内部类,因为尚未为对象添加任何属性,此时隐藏类还是空的:

接下来调用首个赋值语句this.x = x;为当前Point对象创建了新的属性x,此时 V8 会基于C0创建另一个隐藏类C1来替换C0,然后在C1中存放对象属性x的内存位置信息:

这里从C0C1的变化称为转换(Transitions),当我们为同一个类型的对象添加新的属性时,并不是每次都会创建新的隐藏类,而是多个对象会共用某个符合转换条件的隐藏类。接下来继续执行this.y = y 这一条语句,会为Point对象创建新的属性。此时 V8 会进行以下步骤:

基于C1创建另一个隐藏类C1,并且将关于属性y的位置信息写入到C2中。

更新C1为其添加转换信息,即当为Point对象添加属性 y 时,应该转换到隐藏类 C2


整个过程的伪代码描述如下:



  Class C0
    "x": TRANSITION to C1 at offset 0

this.x = x;

  Class C1
    "x": FIELD at offset 0
    "y": TRANSITION to C2 at offset 1

this.y = y;

  Map C2
    "x": FIELD at offset 0
    "y": FIELD at offset 1
Reused Hidden Class:重复使用的隐藏类

我们在上文中提及,如果每次添加新的属性时都创建新的隐藏类无疑是极大的性能浪费,实际上当我们再次创建新的Point对象时,V8 并不会创建新的隐藏类而是使用已有的,过程描述如下:

初始化新的Point对象,并将隐藏类指向C0

添加x属性时,遵循隐藏类的转换原则指向到C1 , 并且根据C1指定的偏移地址写入x

添加y属性时,遵循隐藏类的转换原则指向到C2,并且根据C2指定的偏移地址写入y

另外我们在上文以链表的方式描述转换,实际上真实场景中 V8 会以树的结构来描述转换及其之间的关系,这样就能够用于类似于下面的属性一致而赋值顺序颠倒的场景:

function Point(x, y, reverse) {
  if (reverse) {
    this.x = x;
    this.y = y;
  } else {
    this.y = x;
    this.x = y;
  }
}
Methods & Prototypes:方法与原型

JavaScript 中并没有类的概念(语法糖除外),因此对于方法的调用处理会难于 C++ 或者 Java。下面这个例子中,distance方法可以被看做Point的普通属性之一,不过其并非原始类型的数据,而是指向了另一个函数:

function Point(x, y) {
  this.x = x;
  this.y = y;
  this.distance = PointDistance;
}

function PointDistance(p) {
  var dx = this.x - p.x;
  var dy = this.y - p.y;
  return Math.sqrt(dx*dx + dy*dy);
}

如果我们像上文介绍的普通的 in-object 域一样来处理distance属性,那么无疑会带来较大的内存浪费,毕竟每个对象都要存放一段外部函数引用(Reference 的内存占用往往大于原始类型)。C++ 中则是以指向多个虚函数的虚函数表(V-Tables)解决这个问题。每个包含虚函数的类的实例都会指向这个虚函数表,当调用某个虚函数时,程序会自动从虚函数表中加载该函数的地址信息然后转向到该地址调用。V8 中我们已经使用了隐藏类这一共享数据结构,因此可以很方便地改造下就可以。我们引入了所谓 Constant Functions 的概念,某个 Constant Function 即代表了对象中仅包含某个名字,而具体的属性值存放在描述符本身的概念:



  Class C0
    "x": TRANSITION to C1 at offset 0

this.x = x;

  Class C1
    "x": FIELD at offset 0
    "y": TRANSITION to C2 at offset 1

this.y = y;

  Class C2
    "x": FIELD at offset 0
    "y": FIELD at offset 1
    "distance": TRANSITION to C3 

this.distance = PointDistance;

  Class C3
    "x": FIELD at offset 0
    "y": FIELD at offset 1
    "distance": CONSTANT_FUNCTION 

注意,在这里如果我们将PointDistance 重定义指向了其他函数,那么这个转换也会自动失效,V8 会创建新的隐藏类。另一种解决这个问题的方法就是使用原型,每个构造函数都会有所谓的Prototype属性,该属性会自动成为对象的原型链上的一环,上面的例子可以改写为以下方式:

function Point(x, y) {
  this.x = x;
  this.y = y;
}

Point.prototype.distance = function(p) {
  var dx = this.x - p.x;
  var dy = this.y - p.y;
  return Math.sqrt(dx*dx + dy*dy);
}

...
var u = new Point(1, 2);
var v = new Point(3, 4);
var d = u.distance(v);

V8 同样会把原型链上的方法在隐藏类中映射为 Constant Function 描述符,而调用原型方法往往会比调用自身方法慢一点,毕竟引擎不仅要去扫描自身的隐藏类,还要去扫描原型链上对象的隐藏类才能得知真正的函数调用地址。不过这个不会对于代码的性能造成明显的影响,因此写代码的时候也不必小心翼翼的避免这个。

Dictionary Mode

对于复杂属性的对象,V8 会使用所谓的字典模式(Dictionary Mode)来存储对象,也就是使用哈希表来存放键值信息,这种方式存储开销会小于上文提到的包含了隐藏类的方式,不过查询速度会远小于前者。初始状态下,哈希表中的所有的键与值都被设置为了undefined,当插入新的数据时,计算得出的键名的哈希值的低位会被当做初始的存储索引地址。如果此地址已经被占用了,V8 会尝试向下一个地址进行插入,直到插入成功,伪代码表述如下:

// 插入
insert(table, key, value):
  table = ensureCapacity(table, length(table) + 1)
  code = hash(key)
  n = capacity(table)
  index = code (mod n)
  while getKey(table, index) is not undefined:
    index += 1 (mod n)
  set(table, index, key, value)

//查找
lookup(table, key):
  code = hash(key)
  n = capacity(table)
  index = code (mod n)
  k = getKey(table, index)
  while k is not null or undefined
        and k != key: 
    index += 1 (mod n)
    k = getKey(table, index)
  if k == key:
    return getValue(table, index)
  else:
    return undefined

尽管计算键名哈希值与比较的速度会比较快,但是每次读写属性的时候都进行这么多步骤无疑会大大拉低速度,因此 V8 尽可能地会避免使用这种存储方式。

Fast Elements:数值下标的属性

V8 中将属性名为非负整数(0、1、2……)的属性称为Element,每个对象都有一个指向Element数组的指针,其存放和其他属性是分开的。注意,隐藏类中并不包含 Element 的描述符,但可能包含其它有着不同 Element 类型的同一种隐藏类的转换描述符。大多数情况下,对象都会有 Fast Element,也就是说这些 Element 以连续数组的形式存放。有三种不同的 Fast Element:

Fast small integers

Fast doubles

Fast values

根据标准,JavaScript 中的所有数字都理应以64位浮点数形式出现。因此 V8 尽可能以31位带符号整数来表达数字(最低位总是0,这有助于垃圾回收器区分数字和指针)。因此含有Fast small integers类型的对象,其 Element 类型只会包含这样的数字。如果需要存储小数、大整数或其他特殊值,如-0,则需要将数组提升为 Fast doubles。于是这引入了潜在的昂贵的复制-转换操作,但通常不会频繁发生。Fast doubles 仍然是很快的,因为所有的数字都是无封箱存储的。但如果我们要存储的是其他类型,比如字符串或者对象,则必须将其提升为普通的 Fast Element 数组。

JavaScript 不提供任何确定存储元素多少的办法。你可能会说像这样的办法,new Array(100),但实际上这仅仅针对Array构造函数有用。如果你将值存在一个不存在的下标上,V8会重新开辟更大的内存,将原有元素复制到新内存。V8 可以处理带空洞的数组,也就是只有某些下标是存有元素,而期间的下标都是空的。其内部会安插特殊的哨兵值,因此试图访问未赋值的下标,会得到undefined。当然,Fast Element 也有其限制。如果你在远远超过当前数组大小的下标赋值,V8 会将数组转换为字典模式,将值以哈希表的形式存储。这对于稀疏数组来说很有用,但性能上肯定打了折扣,无论是从转换这一过程来说,还是从之后的访问来说。如果你需要复制整个数组,不要逆向复制(索引从高到低),因为这几乎必然触发字典模式。

    // 这会大大降低大数组的性能
    function copy(a) {
        var b = new Array();
        for (var i = a.length - 1; i >= 0; i--)
            b[i] = a[i];
        return b;
    }

由于普通的属性和数字式属性分开存放,即使数组退化为字典模式,也不会影响到其他属性的访问速度(反之亦然)。

Object 代码声明
// https://v8docs.nodesource.com/node-7.2/d4/da0/v8_8h_source.html#l02660
class V8_EXPORT Object : public Value {
  public:
   V8_DEPRECATE_SOON("Use maybe version",
                     bool Set(Local key, Local value));
   V8_WARN_UNUSED_RESULT Maybe Set(Local context,
                                         Local key, Local value);
 
   V8_DEPRECATE_SOON("Use maybe version",
                     bool Set(uint32_t index, Local value));
   V8_WARN_UNUSED_RESULT Maybe Set(Local context, uint32_t index,
                                         Local value);
 
   // Implements CreateDataProperty (ECMA-262, 7.3.4).
   //
   // Defines a configurable, writable, enumerable property with the given value
   // on the object unless the property already exists and is not configurable
   // or the object is not extensible.
   //
   // Returns true on success.
   V8_WARN_UNUSED_RESULT Maybe CreateDataProperty(Local context,
                                                        Local key,
                                                        Local value);
   V8_WARN_UNUSED_RESULT Maybe CreateDataProperty(Local context,
                                                        uint32_t index,
                                                        Local value);
 
   // Implements DefineOwnProperty.
   //
   // In general, CreateDataProperty will be faster, however, does not allow
   // for specifying attributes.
   //
   // Returns true on success.
   V8_WARN_UNUSED_RESULT Maybe DefineOwnProperty(
       Local context, Local key, Local value,
       PropertyAttribute attributes = None);
 
   // Sets an own property on this object bypassing interceptors and
   // overriding accessors or read-only properties.
   //
   // Note that if the object has an interceptor the property will be set
   // locally, but since the interceptor takes precedence the local property
   // will only be returned if the interceptor doesn"t return a value.
   //
   // Note also that this only works for named properties.
   V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
                 bool ForceSet(Local key, Local value,
                               PropertyAttribute attribs = None));
   V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty",
                     Maybe ForceSet(Local context,
                                          Local key, Local value,
                                          PropertyAttribute attribs = None));
 
   V8_DEPRECATE_SOON("Use maybe version", Local Get(Local key));
   V8_WARN_UNUSED_RESULT MaybeLocal Get(Local context,
                                               Local key);
 
   V8_DEPRECATE_SOON("Use maybe version", Local Get(uint32_t index));
   V8_WARN_UNUSED_RESULT MaybeLocal Get(Local context,
                                               uint32_t index);
 
   V8_DEPRECATED("Use maybe version",
                 PropertyAttribute GetPropertyAttributes(Local key));
   V8_WARN_UNUSED_RESULT Maybe GetPropertyAttributes(
       Local context, Local key);
 
   V8_DEPRECATED("Use maybe version",
                 Local GetOwnPropertyDescriptor(Local key));
   V8_WARN_UNUSED_RESULT MaybeLocal GetOwnPropertyDescriptor(
       Local context, Local key);
 
   V8_DEPRECATE_SOON("Use maybe version", bool Has(Local key));
   V8_WARN_UNUSED_RESULT Maybe Has(Local context,
                                         Local key);
 
   V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local key));
   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
   Maybe Delete(Local context, Local key);
 
   V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
   V8_WARN_UNUSED_RESULT Maybe Has(Local context, uint32_t index);
 
   V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
   Maybe Delete(Local context, uint32_t index);
 
   V8_DEPRECATED("Use maybe version",
                 bool SetAccessor(Local name,
                                  AccessorGetterCallback getter,
                                  AccessorSetterCallback setter = 0,
                                  Local data = Local(),
                                  AccessControl settings = DEFAULT,
                                  PropertyAttribute attribute = None));
   V8_DEPRECATED("Use maybe version",
                 bool SetAccessor(Local name,
                                  AccessorNameGetterCallback getter,
                                  AccessorNameSetterCallback setter = 0,
                                  Local data = Local(),
                                  AccessControl settings = DEFAULT,
                                  PropertyAttribute attribute = None));
   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
   Maybe SetAccessor(Local context, Local name,
                           AccessorNameGetterCallback getter,
                           AccessorNameSetterCallback setter = 0,
                           MaybeLocal data = MaybeLocal(),
                           AccessControl settings = DEFAULT,
                           PropertyAttribute attribute = None);
 
   void SetAccessorProperty(Local name, Local getter,
                            Local setter = Local(),
                            PropertyAttribute attribute = None,
                            AccessControl settings = DEFAULT);
 
   Maybe HasPrivate(Local context, Local key);
   Maybe SetPrivate(Local context, Local key,
                          Local value);
   Maybe DeletePrivate(Local context, Local key);
   MaybeLocal GetPrivate(Local context, Local key);
 
   V8_DEPRECATE_SOON("Use maybe version", Local GetPropertyNames());
   V8_WARN_UNUSED_RESULT MaybeLocal GetPropertyNames(
       Local context);
   V8_WARN_UNUSED_RESULT MaybeLocal GetPropertyNames(
       Local context, KeyCollectionMode mode,
       PropertyFilter property_filter, IndexFilter index_filter);
 
   V8_DEPRECATE_SOON("Use maybe version", Local GetOwnPropertyNames());
   V8_WARN_UNUSED_RESULT MaybeLocal GetOwnPropertyNames(
       Local context);
 
   V8_WARN_UNUSED_RESULT MaybeLocal GetOwnPropertyNames(
       Local context, PropertyFilter filter);
 
   Local GetPrototype();
 
   V8_DEPRECATED("Use maybe version", bool SetPrototype(Local prototype));
   V8_WARN_UNUSED_RESULT Maybe SetPrototype(Local context,
                                                  Local prototype);
 
   Local FindInstanceInPrototypeChain(Local tmpl);
 
   V8_DEPRECATED("Use maybe version", Local ObjectProtoToString());
   V8_WARN_UNUSED_RESULT MaybeLocal ObjectProtoToString(
       Local context);
 
   Local GetConstructorName();
 
   Maybe SetIntegrityLevel(Local context, IntegrityLevel level);
 
   int InternalFieldCount();
 
   V8_INLINE static int InternalFieldCount(
       const PersistentBase& object) {
     return object.val_->InternalFieldCount();
   }
 
   V8_INLINE Local GetInternalField(int index);
 
   void SetInternalField(int index, Local value);
 
   V8_INLINE void* GetAlignedPointerFromInternalField(int index);
 
   V8_INLINE static void* GetAlignedPointerFromInternalField(
       const PersistentBase& object, int index) {
     return object.val_->GetAlignedPointerFromInternalField(index);
   }
 
   void SetAlignedPointerInInternalField(int index, void* value);
   void SetAlignedPointerInInternalFields(int argc, int indices[],
                                          void* values[]);
 
   // Testers for local properties.
   V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local key));
   V8_WARN_UNUSED_RESULT Maybe HasOwnProperty(Local context,
                                                    Local key);
   V8_WARN_UNUSED_RESULT Maybe HasOwnProperty(Local context,
                                                    uint32_t index);
   V8_DEPRECATE_SOON("Use maybe version",
                     bool HasRealNamedProperty(Local key));
   V8_WARN_UNUSED_RESULT Maybe HasRealNamedProperty(Local context,
                                                          Local key);
   V8_DEPRECATE_SOON("Use maybe version",
                     bool HasRealIndexedProperty(uint32_t index));
   V8_WARN_UNUSED_RESULT Maybe HasRealIndexedProperty(
       Local context, uint32_t index);
   V8_DEPRECATE_SOON("Use maybe version",
                     bool HasRealNamedCallbackProperty(Local key));
   V8_WARN_UNUSED_RESULT Maybe HasRealNamedCallbackProperty(
       Local context, Local key);
 
   V8_DEPRECATED(
       "Use maybe version",
       Local GetRealNamedPropertyInPrototypeChain(Local key));
   V8_WARN_UNUSED_RESULT MaybeLocal GetRealNamedPropertyInPrototypeChain(
       Local context, Local key);
 
   V8_DEPRECATED(
       "Use maybe version",
       Maybe GetRealNamedPropertyAttributesInPrototypeChain(
           Local key));
   V8_WARN_UNUSED_RESULT Maybe
   GetRealNamedPropertyAttributesInPrototypeChain(Local context,
                                                  Local key);
 
   V8_DEPRECATED("Use maybe version",
                 Local GetRealNamedProperty(Local key));
   V8_WARN_UNUSED_RESULT MaybeLocal GetRealNamedProperty(
       Local context, Local key);
 
   V8_DEPRECATED("Use maybe version",
                 Maybe GetRealNamedPropertyAttributes(
                     Local key));
   V8_WARN_UNUSED_RESULT Maybe GetRealNamedPropertyAttributes(
       Local context, Local key);
 
   bool HasNamedLookupInterceptor();
 
   bool HasIndexedLookupInterceptor();
 
   int GetIdentityHash();
 
   // TODO(dcarney): take an isolate and optionally bail out?
   Local Clone();
 
   Local CreationContext();
 
   bool IsCallable();
 
   bool IsConstructor();
 
   V8_DEPRECATED("Use maybe version",
                 Local CallAsFunction(Local recv, int argc,
                                             Local argv[]));
   V8_WARN_UNUSED_RESULT MaybeLocal CallAsFunction(Local context,
                                                          Local recv,
                                                          int argc,
                                                          Local argv[]);
 
   V8_DEPRECATED("Use maybe version",
                 Local CallAsConstructor(int argc, Local argv[]));
   V8_WARN_UNUSED_RESULT MaybeLocal CallAsConstructor(
       Local context, int argc, Local argv[]);
 
   V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
 
   static Local New(Isolate* isolate);
 
   V8_INLINE static Object* Cast(Value* obj);
 
  private:
   Object();
   static void CheckCast(Value* obj);
   Local SlowGetInternalField(int index);
   void* SlowGetAlignedPointerFromInternalField(int index);
 };           
               
                                           
                       
                 
            
                     
             
               

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/81320.html

相关文章

  • V8 中的 Fast 属性

    摘要:这些是中可用的最快属性。通常来说我们将线性属性存储中存储的属性称为。因此也支持所谓的属性。整数索引属性的处理和命名属性的复杂性相同。 本文为译文,原文地址:http://v8project.blogspot.com...,作者,@Camillo Bruni ,V8 JavaScript Engine Team Blog 在这篇博客中,我们想解释 V8 如何在内部处理 JavaScrip...

    Andrman 评论0 收藏0
  • 【前端进阶之路】内存基本知识

    摘要:在运行脚本时,需要显示的指定对象。大对象区每一个区域都是由一组内存页构成的。这里是唯一拥有执行权限的内存区。换句话说,是该对象被之后所能回收到内存的总和。一旦活跃对象已被移出,则在旧的半空间中剩下的任何死亡对象被丢弃。 内存管理 本文以V8为背景 对之前的文章进行重新编辑,内容做了很多的调整,使其具有逻辑更加紧凑,内容更加全面。 1. 基础概念 1.1 生命周期 不管什么程序语言,内存...

    Simon_Zhou 评论0 收藏0
  • Node - 内存管理和垃圾回收

    摘要:的内存限制和垃圾回收机制内存限制内存限制一般的后端语言开发中,在基本的内存使用是没有限制的。的内存分代目前没有一种垃圾自动回收算法适用于所有场景,所以的内部采用的其实是两种垃圾回收算法。 前言 从前端思维转变到后端, 有一个很重要的点就是内存管理。以前写前端因为只是在浏览器上运行, 所以对于内存管理一般不怎么需要上心, 但是在服务器端, 则需要斤斤计较内存。 V8的内存限制和垃圾回收机...

    joyqi 评论0 收藏0
  • JavaScript 堆内存分析新工具 OneHeap

    摘要:关注于运行中的内存信息的展示,用可视化的方式还原了,有助于理解内存管理。背景运行过程中的大部分数据都保存在堆中,所以性能分析另一个比较重要的方面是内存,也就是堆的分析。上周发布了工具,可以用来动态地展示的结果,分析各种函数的调用关系。 OneHeap 关注于运行中的 JavaScript 内存信息的展示,用可视化的方式还原了 HeapGraph,有助于理解 v8 内存管理。 ...

    zilu 评论0 收藏0
  • 2017文章总结

    摘要:欢迎来我的个人站点性能优化其他优化浏览器关键渲染路径开启性能优化之旅高性能滚动及页面渲染优化理论写法对压缩率的影响唯快不破应用的个优化步骤进阶鹅厂大神用直出实现网页瞬开缓存网页性能管理详解写给后端程序员的缓存原理介绍年底补课缓存机制优化动 欢迎来我的个人站点 性能优化 其他 优化浏览器关键渲染路径 - 开启性能优化之旅 高性能滚动 scroll 及页面渲染优化 理论 | HTML写法...

    dailybird 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<