资讯专栏INFORMATION COLUMN

基于CPS变换的尾递归转换算法

supernavy / 2437人阅读

摘要:一个解决的办法是从算法上解决,把递归算法改良成只依赖于少数状态的迭代算法,然而此事知易行难,线性递归还容易,树状递归就难以转化了,而且并不是所有递归算法都有非递归实现。

前言

众所周知,递归函数容易爆栈,究其原因,便是函数调用前需要先将参数、运行状态压栈,而递归则会导致函数的多次无返回调用,参数、状态积压在栈上,最终耗尽栈空间

一个解决的办法是从算法上解决,把递归算法改良成只依赖于少数状态的迭代算法,然而此事知易行难,线性递归还容易,树状递归就难以转化了,而且并不是所有递归算法都有非递归实现。

在这里,我介绍一种方法,利用CPS变换,把任意递归函数改写成尾调用形式,以continuation链的形式,将递归占用的栈空间转移到堆上,避免爆栈的悲剧
需要注意的是,这种方法并不能降低算法的时间复杂度,若是指望此法缩短运行时间无异于白日做梦

下文先引入尾调用、尾递归、CPS等概念,然后介绍Trampoline技法,将尾递归转化为循环形式(无尾调用优化语言的必需品),再sumFibonacci为例子讲解CPS变换过程(虽然这两个例子可以轻易写成迭代算法,没必要搞这么复杂,但是最为常见好懂,因此拿来做例子,免得说题目都得说半天),最后讲通用的CPS变换法则

看完这篇文章,大家可以去看看Essentials of Programming Languages相关章节,可以有更深的认识

文中代码皆用JavaScript实现

尾调用 && 尾递归

先来探讨下在什么情况下函数调用才需要保存状态

Add(1, 2)MUL(1, 2)这种明显不需要保存状态,

Add(1, MUL(1, 2))这种呢?计算完MUL(1, 2)后需要返回结果接着计算Add,因此计算MUL前需要保存状态

由此,可以得到一个结论,只有函数调用处于参数位置上,调用后需要返回的函数调用才需要保存状态,上面的例子中,Add是不需要保存状态,MUL需要保存

尾调用指的就是,无需返回的函数调用,即函数调用不处于参数位置上,上面的例子中,Add是尾调用,MUL则不是
写成尾调用形式有助于编译器对函数调用进行优化,对于有尾调用优化的语言,只要编译器判断为尾调用,就不会保存状态

尾递归则是指,写成尾调用形式的递归函数,下面是一例

fact_iter = (x, r) => x == 1 ? 1 : fact_iter(x-1, x*r)

而下面的例子则不是尾递归,因为fact_rec(x-1)处于*的第二个参数位置上

fact_rec = x => x == 1 ? 1 : x * fact_rec(x-1)

因为尾递归无需返回,结果只跟传入参数有关,因此只需用少量变量记录其参数变化,便能轻易改写成循环形式,因此尾递归和循环是等价的,下面把fact_iter改写成循环:

function fact_loop(x)
{
    var r = 1
    
    while(x >= 1)
    {
        r *= x
        x--;
    }
    
    return r;
}
CPS ( Continuation Passing Style )

要解释CPS,便先要解释continuation
continuation是程序控制流的抽象,表示后面将要进行的计算步骤

比如下面这段阶乘函数

fact_rec = x => x == 1 ? 1 : x * fact_rec(x-1)

显然,计算fact_rec(4)之前要先计算fact_rec(3),计算fact_rec(3)之前要先计算fact_rec(2),...
于是,可以得到下面的计算链:

1 ---> fact_rec(1) ---> fact_rec(2) ---> fact_rec(3) ---> fact_rec(4) ---> print

展开计算链后,再从前往后执行,就可以得到最终结果。

对于链上的任意一个步骤,在其之前的是历史步骤,之后的是将要进行的计算,因此之后的都是continuation
比如,对于fact_rec(3),其continuationfact_rec(4) ---> print
对于fact(1),其continuationfact_rec(2) ---> fact_rec(3) ---> fact_rec(4) ---> print

当然,上面的计算链不需要我们手工展开和运行,程序的控制流已经由语法规定好,我们只需要按语法写好程序,解释器自动会帮我们分解计算步骤并按部就班地计算

然而,当现有语法无法满足我们的控制流需求怎么办?比如我们想从一个函数跳转至另一个函数的某处执行,语言并没有提供这样的跳转机制,那便需要手工传递控制流了。

CPS是一种显式地把continuation作为对象传递的coding风格,以便能更自由地操控程序的控制流

既然是一种风格,自然需要有约定,CPS约定:每个函数都需要有一个参数kontkontcontinuation的简写,表示对计算结果的后续处理

比如上面的fact_rec(x)就需要改写为fact_rec(x, kont),读作 “计算出x阶乘后,用kont对阶乘结果做处理”

kont同样需要有约定,因为continuation是对某计算阶段结果做处理的,因此规定kont为一个单参数输入,单参数输出的函数,即kont的类型是a->b

因此,按CPS约定改写后的fact_rec如下:

fact_rec = (x, kont) => x == 1 ? kont(1) : fact_rec(x-1, res => kont(x*res))

当我们运行fact_rec(4, r=>r),就可以得到结果24

模拟一下fact_rec(3, r=>r)的执行过程,就会发现,解释器会先将计算链分解展开

fact_rec(3, r=>r)
fact_rec(2, res => (r=>r)(3*res))
fact_rec(1, res => (res => (r=>r)(3*res))(2*res))
(res => (res => (r=>r)(3*res))(2*res))(1)

当然,这种风格非常反人类,因为内层函数被外层函数的参数分在两端包裹住,不符合人类的线性思维

我们写成下面这种符合直觉的形式

1 ---> res => 2*res ---> res => 3*res ---> res => res

链上每一个步骤的输出作为下一步骤的输入

当解释器展开成上面的计算链后,便开始从左往右的计算,直到运行完所有的计算步骤

需要注意到的是,因为kont承担了函数后续所有的计算流程,因此不需要返回,所以对kont的调用便是尾调用
当我们把程序中所有的函数都按CPS约定改写以后,程序中所有的函数调用就都变成了尾调用了,而这正是本文的目的
这个改写的过程就称为CPS变换

需要警惕的是,CPS变换并非没有状态保存这个过程,它只是把状态保存到continuation对象中,然后一级一级地往下传,因此空间复杂度并没有降低,只是不需要由函数栈帧来承受保存状态的负担而已

CPS约定简约,却可显式地控制程序的执行,程序里各种形式的控制流都可以用它来表达(比如协程、循环、选择等)
所以很多函数式语言的实现都采用了CPS形式,将语句的执行分解成一个小步骤一次执行,
当然,也因为CPS形式过于简洁,表达起来过于繁琐,可以看成一种高级的汇编语言

Trampoline技法

经过CPS变换后,递归函数已经转化成一条长长的continuation

尾调用函数层层嵌套,永不返回,然而在缺乏尾调用优化的语言中,并不知晓函数不会返回,状态、参数压栈依旧会发生,因此需要手动强制弹出下一层调用的函数,禁止解释器的压栈行为,这就是所谓的Trampoline

因为continuation只接受一个结果参数,然后调用另一个continuation处理结果,因此我们需要显式地用变量vkont分别表示上一次的结果、下一个continuation,然后在一个循环里不断地计算continuation,直到处理完整条continuation链,然后返回结果

function trampoline(kont_v)  // kont_v = { kont: ..., v: ... }
{
    while(kont_v.kont)
        kont_v = kont_v.kont(kont_v.v);
    
    return kont_v.v;
}

kont_v.kont是一个bounce,每次执行kont_v.kont(kont_v.v)时,都会根据上次结果计算出本次结果,然后弹出下一级continuation,然后保存在对象{v: ..., kont: ...}

当然,在bounce中用bind的话,就不需要构造对象显式保存v了,因为bind会将v保存到闭包中,此时,trampoline变成:

function trampoline(kont)
{
    while(typeof kont == "function")
        kont = kont();
    return kont.val;
}

bind改写会更简洁,然而,因为想要求的值有可能是个function,我们需要在bounce里用对象{val: ...}把结果包装起来

具体应用可看下面的例子

线性递归的CPS变换:求和

求和的递归实现:

sum = x => { if(x == 0) return 0; else return x + sum(x-1) }

当参数过大,比如sum(4000000),提示Uncaught RangeError: Maximum call stack size exceeded,爆栈了!

现在,我们通过CPS变换,将上面的函数改写成尾递归形式:

首先,sum多添加一个参数表示continuation,表示对计算结果进行的后续处理,

sum = (x, kont) => ...

其中,kont是一个单参数函数,形如 res => ...,表示对结果res的后续处理

然后逐情况考虑

x == 0时,计算结果直接为0,并将kont应用到结果上,

sum = (x, kont) => { if(x == 0) return kont(0); else ... }

x != 0时,需要先计算x-1的求和,然后将计算结果与x相加,然后把相加结果输入kont中,

sum = (x, kont) => { 
       if(x == 0) return kont(0); 
       else return sum( x - 1, res => kont(res + x) ) };
}

好了,现在我们已经完成了sumCPS变换,大家仔细看看,上面的函数已经是尾递归形式啦。

现在还有最后的问题,怎么去调用?比如要算4的求和sum(4, kont),这里的kont应该是什么呢?

可以这样想,当我们计算出结果,后续的处理就是把结果简单地输出,因此kont应为res => res

sum(4, res => res)

把上面的代码复制到Console,运行就能得到结果10

下面我们模拟一下sum(3, res => res)的运作,以对其有个直观的认识

sum( 3, res => res )
sum( 2, res => ( (res => res)(res+3) ) )
sum( 1, res => ( res => ( (res => res)(res+3) ) )(res+2) ) )
sum( 0, res => ( res => ( res => ( (res => res)(res+3) ) )(res+2) ) )(res+1) )

// 展开continuation链
( res => ( res => ( res => ( (res => res)(res+3) ) )(res+2) ) )(res+1) )(0)

// 收缩continuation链
( res => ( res => ( (res => res)(res+3) ) )(res+2) )(0+1)
( res => ( (res => res)(res+3) ) )(0+1+2)
(res => res)(0+1+2+3)
6

从上面的展开过程可以看到,sum(x, kont)分为两个步骤

展开continuation,尾调用函数层层嵌套,先做的continuation在外层,后做的continuation放内层,这也是CPS反人类的原因人类思考阅读都是线性的(从上往下,从左往右),而CPS则是从外到内,而且外层函数和参数包裹着内层,阅读时还需要眼睛在左右两端不断游离

收缩continuation,不断将外层continuation计算的结果往内层传

当然,现在运行sum(4000000, res => res),依然会爆栈,因为js默认并没有对尾调用做优化,我们需要利用上面的Trampoline技法将其改成循环形式(上文已经提过,尾递归和循环等价)

可是等等,上面说的Trampoline技法只针对于收缩continuation链过程,可是sum(x, kont)还包括展开过程啊?别担心,可以看到展开过程也是尾递归形式,我们只需稍作修改,就可以将其改成continuation的形式

( r => sum( x - 1, res => kont(res + x) )(null)

如此便可把continuation链的展开和收缩过程统一起来,写成以下的循环形式

function trampoline(kont_v)
{
    while(kont_v.kont)
        kont_v = kont_v.kont(kont_v.v);
    
    return kont_v.v;
}

function sum_bounce(x, kont)
{    
    if(x == 0) return {kont: kont, v: 0};
    else return { kont: r => sum_bounce(x - 1, res => {
                                                 return { kont: kont, 
                                                          v: res + x }
                                               } ),
                  v: null };
}

var sum = x => trampoline( sum_bounce(x, res => 
                                            {return { kont: null, 
                                                      v: res } }) )

OK,以上便是改成循环形式的尾递归写法
sum(4000000)输入Console,稍等片刻,便能得到答案8000002000000

当然,用bind的话可以改写成更简约的形式:

function trampoline(kont)
{
    while(typeof kont == "function")
        kont = kont();
    return kont.val;
}

function sum_bounce(x, kont)
{    
    if(x == 0) return kont.bind(null, {val: 0});
    else return sum_bounce.bind( null, x - 1, res => kont.bind(null, {val: res.val + x}) );
}

var sum = x => trampoline( sum_bounce(x, res => res) )

也能起到同样的效果

树状递归的CPS变换:Fibonacci

因为Fibonacci树状递归,转换起来要比线性递归的sum麻烦一些,先写出普通的递归算法

fib = x => x == 0 ? 1 : ( x == 1 ? 1 : fib(x-1) + fib(x-2) )

同样,当参数过大,比如fib(40000),就会爆栈

开始做CPS变换,有前面例子铺垫,下面只讲关键点

添加kont参数,则fib = (x, kont) => ...

分情况考虑

x == 0 or 1fib = (x, kont) => x == 0 ? kont(1) : ( x == 1 ? kont(1) ...

x != 1 or 1,需要先计算x-1fib,再计算出x-2fib,然后将两个结果相加,然后将kont应用到相加结果上

fib = (x, kont) => 
      x == 0 ? kont(1) : 
      x == 1 ? kont(1) : 
               fib( x - 1, res1 => fib(x - 2, res2 => kont(res1 + res2) ) )

以上便是fibCPS变换后的尾递归形式,可见难点在于kont的转化,这里需要好好揣摩

最后利用Trampoline技法将尾递归转换成循环形式

function trampoline(kont_v)
{
    while(kont_v.kont)
        kont_v = kont_v.kont(kont_v.v);
    
    return kont_v.v;
}

function fib_bounce(x, kont)
{    
    if(x == 0 || x == 1) return {kont: kont, v: 1};
    else return { 
                  kont: r => fib_bounce( x - 1, 
                                         res1 => 
                                         {
                                            return { 
                                             kont: r => fib_bounce(x - 2,
                                                                   res2 =>
                                                                   { 
                                                                     return  { 
                                                                       kont: kont,
                                                                       v: res1 + res2
                                                                     }
                                                                   }), 
                                             v: null 
                                           }
                                         } ),
                  v: null 
                };
}

var fib = x => trampoline( fib_bounce(x, res => 
                                            {return { kont: null, 
                                                      v: res } }) )

OK,以上便是改成循环形式的尾递归写法
console中输入fib(5)fib(6)fib(7)可以验证其正确性,

当然,当你运行fib(40000)时,发现的确没有提示爆栈了,但是程序却卡死了,何也?

正如我在前言说过,这种方法并不会降低树状递归算法的时间复杂度,只是将占用的栈空间以闭包链的形式转移至堆上,免去爆栈的可能,但是当参数过大时,运行复杂度过高,continuation链过长也导致大量内存被占用,因此,优化算法才是王道

当然,用bind的话可以改写成更简约的形式:

function trampoline(kont)
{
    while(typeof kont == "function")
        kont = kont();
    return kont.val;
}

fib_bounce = (x, kont) =>
 x == 0 ? kont.bind(null, {val: 1}) : 
 x == 1 ? kont.bind(null, {val: 1}) : 
          fib_bounce.bind( null, x - 1, 
                           res1 => fib_bounce.bind(null, x - 2,
                                                   res2 => kont.bind(null, {val: res1.val + res2.val}) ) )

var fib = x => trampoline( fib_bounce(x, res => res) )

也能起到同样的效果

CPS变换法则

对于基本表达式如数字、变量、函数对象、参数是基本表达式的内建函数(如四则运算等)等,不需要进行变换,

若是函数定义,则需要添加一个参数kont,然后对函数体做CPS变换

若是参数位置有函数调用的函数调用,fn(simpleExp1, exp2, ..., expn),如exp2就是第一个是函数调用的参数
则过程比较复杂,用伪代码表述如下:(<<...>>内表示表达式, <<...@exp...>表示对exp求值后再代回<<...>>中):

cpsOfExp(<< fn(simpleExp1, exp2, ..., expn) >>, kont)
= cpsOfExp(exp2, << r2 => @cpsOfExp(<< fn(simpleExp1, r2, ..., expn) >>, kont) >>)

顺序表达式的变换亦与上类似

当然这个问题不是这么容易讲清楚,首先你需要对你想要变换的语言了如指掌,知道其表达式类型、求值策略等,
JavaScript语法较为繁杂,解释起来不太方便,
之前我用C++模板写过一个CPS风格的Lisp解释器,日后有时间以此为例详细讲讲

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/81764.html

相关文章

  • 翻译连载 | 第 9 章:递归(下)-《JavaScript轻量级函数式编程》 |《你不知道的JS》

    摘要:每个函数调用都将开辟出一小块称为堆栈帧的内存。当第二个函数开始执行,堆栈帧增加到个。当这个函数调用结束后,它的帧会从堆栈中退出。保持堆栈帧跟踪函数调用的状态,并将其分派给下一个递归调用迭。 原文地址:Functional-Light-JS 原文作者:Kyle Simpson-《You-Dont-Know-JS》作者 关于译者:这是一个流淌着沪江血液的纯粹工程:认真,是 HTM...

    LeviDing 评论0 收藏0
  • 重磅:前端 MVVM 与 FRP 的升阶实践 —— ReRest 可视化编程

    摘要:是前端开发领域新兴的方法论体系,它继承了与编程理念,在技术上有不少创新。但专利与开源协议是平行的两个世界,改底层也不大容易解决问题。此外,要求在中结合各属性的是否变化,判断是否该触发更新。 ReRest (Reactive Resource State Transfer) 是前端开发领域新兴的方法论体系,它继承了 MVVM 与 FRP 编程理念,在技术上有不少创新。本文从专利稿修改而来...

    Cciradih 评论0 收藏0
  • 重磅:前端 MVVM 与 FRP 的升阶实践 —— ReRest 可视化编程

    摘要:是前端开发领域新兴的方法论体系,它继承了与编程理念,在技术上有不少创新。但专利与开源协议是平行的两个世界,改底层也不大容易解决问题。此外,要求在中结合各属性的是否变化,判断是否该触发更新。 ReRest (Reactive Resource State Transfer) 是前端开发领域新兴的方法论体系,它继承了 MVVM 与 FRP 编程理念,在技术上有不少创新。本文从专利稿修改而来...

    zsy888 评论0 收藏0
  • Javascript Generator - 函数式编程 - Javascript核心

    摘要:中的的引入,极大程度上改变了程序员对迭代器的看法,并为解决提供了新方法。被称为,也有些人把的返回值称为一个。其中属性包含实际返回的数值,属性为布尔值,标记迭代器是否完成迭代。 原文: http://pij.robinqu.me/JavaScript_Core/Functional_JavaScript/JavaScript_Generator.html 源代码: htt...

    yearsj 评论0 收藏0
  • 图像超分辨率重建概述

    摘要:多图像超分辨率重建算法根据重建过程所在域不同可分为频域法和空域法。单图像超分辨率单图像超分辨率输入的是一幅图像,仅利用一幅图像来重建得到图像。 1. 概念:         图像分辨率是一组用于评估图像中蕴含细节信息丰富程度的性能参数,包括时间分辨率、空间分辨率及色阶分辨率等,体现了成...

    MonoLog 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<