回答:这个问题思考了很久,作为过来人谈一谈,建议在看我这篇回答之前先去了解一下数据挖掘的概念和定义。在学习数据挖掘之前你应该明白几点:数据挖掘目前在中国的尚未流行开,犹如屠龙之技。数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效)数据挖掘适用于传统的BI(报表、OLA...
回答:其实根本就没有什么数据分析师,或者说,人人都是数据分析师。懂我这个意思吗?我的文章里,也写过很多数据行业的知识,你可以去看看,其实有时候想想,你就不一定非得从事这样的行业了。就拿数据挖掘来说吧,据我所知,厂商今年都混的不怎么样,为什么?客户需求很少,而且都是定制化的,整个项目的周期很长。还有就是一个企业里,互联网公司可能还好一点,数据分析师根本不需要那么多,你看看ucloud的数据分析报录比,20...
回答:谢谢邀请!数据分析师通常分成两种,一种是应用级数据分析师,另一种是研发级数据分析师,区别就在于是否具备算法设计及实现的能力。应用级数据分析师通常需要掌握各种数据分析工具,把业务模型映射到数据分析工具上,从而得到数据分析的结果。数据分析工具比较多,比如Excel就是一个传统的数据分析工具,另外还有Minitab、LINGO、JMP等,要想全面掌握这些工具的使用需要具备一定的数学基础和统计学基础。通常...
回答:数据分析的应用几乎是无行业和人群限制的。数据分析的魅力体现在数据的价值和创新的能力,运用数据的能力越来越成为基础的职业技能,因此任何有兴趣和需求的人士都可以进入这个领域。涉及到数据分析学习和工具的选择, 那么久可以从知识和应用的角度入门数据分析的路径。01SQL数据库语言作为数据分析师,我们首先要知道如何获取数据,其中最常用的就是从关系型数据库中取数。因此,你可以不会R,但不能不会SQL。大数据...
回答:先确认下自己是否对此感兴趣,正感兴趣就考虑学习,不论是自学还是参加学习,都务必要有坚定的信念,当然学习数据分析是需要一定的数学、统计基础,同时需要掌握一点数据分析的工具软件,若有人带你学习或指导你,将会事半功倍,我知道比较牛的数据分析专家是赵强,舒立克商学院数据分析教授,有兴趣可以了解下他,
...据取样的样本,而在这个过程中多多少少还有带有个人对如何实现数据挖掘目标主观认识而进行操作的。而当我们拿到了1个样本时,探索的内容包括: 这个样本的数据是否能达到我们原先设想的要求 数据间有没有什么明显的规律...
... 2.1 监督学习 写给人类的机器学习 2.2 监督学习 II Python 数据分析与挖掘实战 第5章 挖掘建模 Python 数据分析与挖掘实战 第13章 财政收入影响因素分析及预测模型 与 TensorFlow 的初次接触 2. TensorFlow 中的线性回归 SciPyCon 2018 sklear...
...取异常日志是个大难题 面对海量的日志(TB乃至PB级别),如何从日志中挖掘出异常信息对于大部分的开发者而言是一个大难题。例如,判断机器的延时是否正常,部分request是否正常。通常,我们对于异常的数据,要及时的报警...
...wn、XPwn 等赛事。 议题解读 通过结合真实环境案例,介绍如何在 macOS 平台上不破坏一个字节内存的情况下稳定地获得 root 权限。议题将会分析较为通用的挖掘思路,并针对开发者给出安全设计建议。 02 弑君者Kingslayer:供应链攻...
摘要: 什么是数据挖掘?什么是机器学习?又如何进行Python数据预处理?本文将带领大家一同了解数据挖掘和机器学习技术,通过淘宝商品案例进行数据预处理实战,通过鸢尾花案例介绍各种分类算法。 课程主讲简介:韦玮...
摘要: 什么是数据挖掘?什么是机器学习?又如何进行Python数据预处理?本文将带领大家一同了解数据挖掘和机器学习技术,通过淘宝商品案例进行数据预处理实战,通过鸢尾花案例介绍各种分类算法。 课程主讲简介:韦玮...
...radata的通信行业解决方案资深总监姜欣也分享了其公司在数据分析层面引入云的建议,其中IDA方法论颇有代表性和实用性。构建分析云IDA的方法论,即通过对信息的整合I、探索D,转化为行动A。其实运营商目前所做的很多工...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
一、活动亮点:全球31个节点覆盖 + 线路升级,跨境业务福音!爆款云主机0.5折起:香港、海外多节点...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...