资讯专栏INFORMATION COLUMN

RSA加密解密(无数据大小限制,php、go、java互通实现)

RobinQu / 3966人阅读

摘要:加解密中必须考虑到的密钥长度明文长度和密文长度问题。而只要用到,那么就要占用实际的明文长度,于是实际明文长度需要减去字节长度。所以如果要对任意长度的数据进行加密,就需要将数据分段后进行逐一加密,并将结果进行拼接。

RSA加解密中必须考虑到的密钥长度、明文长度和密文长度问题。明文长度需要小于密钥长度,而密文长度则等于密钥长度。因此当加密内容长度大于密钥长度时,有效的RSA加解密就需要对内容进行分段。

这是因为,RSA算法本身要求加密内容也就是明文长度m必须0

这样,对于1024长度的密钥。128字节(1024bits)-减去11字节正好是117字节,但对于RSA加密来讲,padding也是参与加密的,所以,依然按照1024bits去理解,但实际的明文只有117字节了。

所以如果要对任意长度的数据进行加密,就需要将数据分段后进行逐一加密,并将结果进行拼接。同样,解码也需要分段解码,并将结果进行拼接。

Php实现

</>复制代码

  1. if (! function_exists("url_safe_base64_encode")) {
  2. function url_safe_base64_encode ($data) {
  3. return str_replace(array("+","/", "="),array("-","_", ""), base64_encode($data));
  4. }
  5. }
  6. if (! function_exists("url_safe_base64_decode")) {
  7. function url_safe_base64_decode ($data) {
  8. $base_64 = str_replace(array("-","_"),array("+","/"), $data);
  9. return base64_decode($base_64);
  10. }
  11. }
  12. class XRsa
  13. {
  14. const CHAR_SET = "UTF-8";
  15. const BASE_64_FORMAT = "UrlSafeNoPadding";
  16. const RSA_ALGORITHM_KEY_TYPE = OPENSSL_KEYTYPE_RSA;
  17. const RSA_ALGORITHM_SIGN = OPENSSL_ALGO_SHA256;
  18. protected $public_key;
  19. protected $private_key;
  20. protected $key_len;
  21. public function __construct($pub_key, $pri_key = null)
  22. {
  23. $this->public_key = $pub_key;
  24. $this->private_key = $pri_key;
  25. $pub_id = openssl_get_publickey($this->public_key);
  26. $this->key_len = openssl_pkey_get_details($pub_id)["bits"];
  27. }
  28. /*
  29. * 创建密钥对
  30. */
  31. public static function createKeys($key_size = 2048)
  32. {
  33. $config = array(
  34. "private_key_bits" => $key_size,
  35. "private_key_type" => self::RSA_ALGORITHM_KEY_TYPE,
  36. );
  37. $res = openssl_pkey_new($config);
  38. openssl_pkey_export($res, $private_key);
  39. $public_key_detail = openssl_pkey_get_details($res);
  40. $public_key = $public_key_detail["key"];
  41. return [
  42. "public_key" => $public_key,
  43. "private_key" => $private_key,
  44. ];
  45. }
  46. /*
  47. * 公钥加密
  48. */
  49. public function publicEncrypt($data)
  50. {
  51. $encrypted = "";
  52. $part_len = $this->key_len / 8 - 11;
  53. $parts = str_split($data, $part_len);
  54. foreach ($parts as $part) {
  55. $encrypted_temp = "";
  56. openssl_public_encrypt($part, $encrypted_temp, $this->public_key);
  57. $encrypted .= $encrypted_temp;
  58. }
  59. return url_safe_base64_encode($encrypted);
  60. }
  61. /*
  62. * 私钥解密
  63. */
  64. public function privateDecrypt($encrypted)
  65. {
  66. $decrypted = "";
  67. $part_len = $this->key_len / 8;
  68. $base64_decoded = url_safe_base64_decode($encrypted);
  69. $parts = str_split($base64_decoded, $part_len);
  70. foreach ($parts as $part) {
  71. $decrypted_temp = "";
  72. openssl_private_decrypt($part, $decrypted_temp,$this->private_key);
  73. $decrypted .= $decrypted_temp;
  74. }
  75. return $decrypted;
  76. }
  77. /*
  78. * 私钥加密
  79. */
  80. public function privateEncrypt($data)
  81. {
  82. $encrypted = "";
  83. $part_len = $this->key_len / 8 - 11;
  84. $parts = str_split($data, $part_len);
  85. foreach ($parts as $part) {
  86. $encrypted_temp = "";
  87. openssl_private_encrypt($part, $encrypted_temp, $this->private_key);
  88. $encrypted .= $encrypted_temp;
  89. }
  90. return url_safe_base64_encode($encrypted);
  91. }
  92. /*
  93. * 公钥解密
  94. */
  95. public function publicDecrypt($encrypted)
  96. {
  97. $decrypted = "";
  98. $part_len = $this->key_len / 8;
  99. $base64_decoded = url_safe_base64_decode($encrypted);
  100. $parts = str_split($base64_decoded, $part_len);
  101. foreach ($parts as $part) {
  102. $decrypted_temp = "";
  103. openssl_public_decrypt($part, $decrypted_temp,$this->public_key);
  104. $decrypted .= $decrypted_temp;
  105. }
  106. return $decrypted;
  107. }
  108. /*
  109. * 数据加签
  110. */
  111. public function sign($data)
  112. {
  113. openssl_sign($data, $sign, $this->private_key, self::RSA_ALGORITHM_SIGN);
  114. return url_safe_base64_encode($sign);
  115. }
  116. /*
  117. * 数据签名验证
  118. */
  119. public function verify($data, $sign)
  120. {
  121. $pub_id = openssl_get_publickey($this->public_key);
  122. $res = openssl_verify($data, url_safe_base64_decode($sign), $pub_id, self::RSA_ALGORITHM_SIGN);
  123. return $res;
  124. }
  125. }
Go实现

</>复制代码

  1. package xrsa
  2. import (
  3. "encoding/pem"
  4. "encoding/base64"
  5. "crypto/x509"
  6. "crypto/rsa"
  7. "crypto/rand"
  8. "errors"
  9. "crypto"
  10. "io"
  11. "bytes"
  12. "encoding/asn1"
  13. )
  14. const (
  15. CHAR_SET = "UTF-8"
  16. BASE_64_FORMAT = "UrlSafeNoPadding"
  17. RSA_ALGORITHM_KEY_TYPE = "PKCS8"
  18. RSA_ALGORITHM_SIGN = crypto.SHA256
  19. )
  20. type XRsa struct {
  21. publicKey *rsa.PublicKey
  22. privateKey *rsa.PrivateKey
  23. }
  24. // 生成密钥对
  25. func CreateKeys(publicKeyWriter, privateKeyWriter io.Writer, keyLength int) error {
  26. // 生成私钥文件
  27. privateKey, err := rsa.GenerateKey(rand.Reader, keyLength)
  28. if err != nil {
  29. return err
  30. }
  31. derStream := MarshalPKCS8PrivateKey(privateKey)
  32. block := &pem.Block{
  33. Type: "PRIVATE KEY",
  34. Bytes: derStream,
  35. }
  36. err = pem.Encode(privateKeyWriter, block)
  37. if err != nil {
  38. return err
  39. }
  40. // 生成公钥文件
  41. publicKey := &privateKey.PublicKey
  42. derPkix, err := x509.MarshalPKIXPublicKey(publicKey)
  43. if err != nil {
  44. return err
  45. }
  46. block = &pem.Block{
  47. Type: "PUBLIC KEY",
  48. Bytes: derPkix,
  49. }
  50. err = pem.Encode(publicKeyWriter, block)
  51. if err != nil {
  52. return err
  53. }
  54. return nil
  55. }
  56. func NewXRsa(publicKey []byte, privateKey []byte) (*XRsa, error) {
  57. block, _ := pem.Decode(publicKey)
  58. if block == nil {
  59. return nil, errors.New("public key error")
  60. }
  61. pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
  62. if err != nil {
  63. return nil, err
  64. }
  65. pub := pubInterface.(*rsa.PublicKey)
  66. block, _ = pem.Decode(privateKey)
  67. if block == nil {
  68. return nil, errors.New("private key error!")
  69. }
  70. priv, err := x509.ParsePKCS8PrivateKey(block.Bytes)
  71. if err != nil {
  72. return nil, err
  73. }
  74. pri, ok := priv.(*rsa.PrivateKey)
  75. if ok {
  76. return &XRsa {
  77. publicKey: pub,
  78. privateKey: pri,
  79. }, nil
  80. } else {
  81. return nil, errors.New("private key not supported")
  82. }
  83. }
  84. // 公钥加密
  85. func (r *XRsa) PublicEncrypt(data string) (string, error) {
  86. partLen := r.publicKey.N.BitLen() / 8 - 11
  87. chunks := split([]byte(data), partLen)
  88. buffer := bytes.NewBufferString("")
  89. for _, chunk := range chunks {
  90. bytes, err := rsa.EncryptPKCS1v15(rand.Reader, r.publicKey, chunk)
  91. if err != nil {
  92. return "", err
  93. }
  94. buffer.Write(bytes)
  95. }
  96. return base64.RawURLEncoding.EncodeToString(buffer.Bytes()), nil
  97. }
  98. // 私钥解密
  99. func (r *XRsa) PrivateDecrypt(encrypted string) (string, error) {
  100. partLen := r.publicKey.N.BitLen() / 8
  101. raw, err := base64.RawURLEncoding.DecodeString(encrypted)
  102. chunks := split([]byte(raw), partLen)
  103. buffer := bytes.NewBufferString("")
  104. for _, chunk := range chunks {
  105. decrypted, err := rsa.DecryptPKCS1v15(rand.Reader, r.privateKey, chunk)
  106. if err != nil {
  107. return "", err
  108. }
  109. buffer.Write(decrypted)
  110. }
  111. return buffer.String(), err
  112. }
  113. // 数据加签
  114. func (r *XRsa) Sign(data string) (string, error) {
  115. h := RSA_ALGORITHM_SIGN.New()
  116. h.Write([]byte(data))
  117. hashed := h.Sum(nil)
  118. sign, err := rsa.SignPKCS1v15(rand.Reader, r.privateKey, RSA_ALGORITHM_SIGN, hashed)
  119. if err != nil {
  120. return "", err
  121. }
  122. return base64.RawURLEncoding.EncodeToString(sign), err
  123. }
  124. // 数据验签
  125. func (r *XRsa) Verify(data string, sign string) error {
  126. h := RSA_ALGORITHM_SIGN.New()
  127. h.Write([]byte(data))
  128. hashed := h.Sum(nil)
  129. decodedSign, err := base64.RawURLEncoding.DecodeString(sign)
  130. if err != nil {
  131. return err
  132. }
  133. return rsa.VerifyPKCS1v15(r.publicKey, RSA_ALGORITHM_SIGN, hashed, decodedSign)
  134. }
  135. func MarshalPKCS8PrivateKey(key *rsa.PrivateKey) []byte {
  136. info := struct {
  137. Version int
  138. PrivateKeyAlgorithm []asn1.ObjectIdentifier
  139. PrivateKey []byte
  140. }{}
  141. info.Version = 0
  142. info.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 1)
  143. info.PrivateKeyAlgorithm[0] = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
  144. info.PrivateKey = x509.MarshalPKCS1PrivateKey(key)
  145. k, _ := asn1.Marshal(info)
  146. return k
  147. }
  148. func split(buf []byte, lim int) [][]byte {
  149. var chunk []byte
  150. chunks := make([][]byte, 0, len(buf)/lim+1)
  151. for len(buf) >= lim {
  152. chunk, buf = buf[:lim], buf[lim:]
  153. chunks = append(chunks, chunk)
  154. }
  155. if len(buf) > 0 {
  156. chunks = append(chunks, buf[:len(buf)])
  157. }
  158. return chunks
  159. }
Java实现

</>复制代码

  1. package com.inspii;
  2. import org.apache.commons.codec.binary.Base64;
  3. import org.apache.commons.io.IOUtils;
  4. import javax.crypto.Cipher;
  5. import java.io.ByteArrayOutputStream;
  6. import java.security.*;
  7. import java.security.interfaces.RSAPublicKey;
  8. import java.security.interfaces.RSAPrivateKey;
  9. import java.security.spec.PKCS8EncodedKeySpec;
  10. import java.security.spec.X509EncodedKeySpec;
  11. import java.util.HashMap;
  12. import java.util.Map;
  13. public class XRsa {
  14. public static final String CHARSET = "UTF-8";
  15. public static final String RSA_ALGORITHM = "RSA";
  16. public static final String RSA_ALGORITHM_SIGN = "SHA256WithRSA";
  17. private RSAPublicKey publicKey;
  18. private RSAPrivateKey privateKey;
  19. public XRsa(String publicKey, String privateKey)
  20. {
  21. try {
  22. KeyFactory keyFactory = KeyFactory.getInstance(RSA_ALGORITHM);
  23. //通过X509编码的Key指令获得公钥对象
  24. X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(Base64.decodeBase64(publicKey));
  25. this.publicKey = (RSAPublicKey) keyFactory.generatePublic(x509KeySpec);
  26. //通过PKCS#8编码的Key指令获得私钥对象
  27. PKCS8EncodedKeySpec pkcs8KeySpec = new PKCS8EncodedKeySpec(Base64.decodeBase64(privateKey));
  28. this.privateKey = (RSAPrivateKey) keyFactory.generatePrivate(pkcs8KeySpec);
  29. } catch (Exception e) {
  30. throw new RuntimeException("不支持的密钥", e);
  31. }
  32. }
  33. public static Map createKeys(int keySize){
  34. //为RSA算法创建一个KeyPairGenerator对象
  35. KeyPairGenerator kpg;
  36. try{
  37. kpg = KeyPairGenerator.getInstance(RSA_ALGORITHM);
  38. }catch(NoSuchAlgorithmException e){
  39. throw new IllegalArgumentException("No such algorithm-->[" + RSA_ALGORITHM + "]");
  40. }
  41. //初始化KeyPairGenerator对象,不要被initialize()源码表面上欺骗,其实这里声明的size是生效的
  42. kpg.initialize(keySize);
  43. //生成密匙对
  44. KeyPair keyPair = kpg.generateKeyPair();
  45. //得到公钥
  46. Key publicKey = keyPair.getPublic();
  47. String publicKeyStr = Base64.encodeBase64URLSafeString(publicKey.getEncoded());
  48. //得到私钥
  49. Key privateKey = keyPair.getPrivate();
  50. String privateKeyStr = Base64.encodeBase64URLSafeString(privateKey.getEncoded());
  51. Map keyPairMap = new HashMap();
  52. keyPairMap.put("publicKey", publicKeyStr);
  53. keyPairMap.put("privateKey", privateKeyStr);
  54. return keyPairMap;
  55. }
  56. public String publicEncrypt(String data){
  57. try{
  58. Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
  59. cipher.init(Cipher.ENCRYPT_MODE, publicKey);
  60. return Base64.encodeBase64URLSafeString(rsaSplitCodec(cipher, Cipher.ENCRYPT_MODE, data.getBytes(CHARSET), publicKey.getModulus().bitLength()));
  61. }catch(Exception e){
  62. throw new RuntimeException("加密字符串[" + data + "]时遇到异常", e);
  63. }
  64. }
  65. public String privateDecrypt(String data){
  66. try{
  67. Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
  68. cipher.init(Cipher.DECRYPT_MODE, privateKey);
  69. return new String(rsaSplitCodec(cipher, Cipher.DECRYPT_MODE, Base64.decodeBase64(data), publicKey.getModulus().bitLength()), CHARSET);
  70. }catch(Exception e){
  71. throw new RuntimeException("解密字符串[" + data + "]时遇到异常", e);
  72. }
  73. }
  74. public String privateEncrypt(String data){
  75. try{
  76. Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
  77. cipher.init(Cipher.ENCRYPT_MODE, privateKey);
  78. return Base64.encodeBase64URLSafeString(rsaSplitCodec(cipher, Cipher.ENCRYPT_MODE, data.getBytes(CHARSET), publicKey.getModulus().bitLength()));
  79. }catch(Exception e){
  80. throw new RuntimeException("加密字符串[" + data + "]时遇到异常", e);
  81. }
  82. }
  83. public String publicDecrypt(String data){
  84. try{
  85. Cipher cipher = Cipher.getInstance(RSA_ALGORITHM);
  86. cipher.init(Cipher.DECRYPT_MODE, publicKey);
  87. return new String(rsaSplitCodec(cipher, Cipher.DECRYPT_MODE, Base64.decodeBase64(data), publicKey.getModulus().bitLength()), CHARSET);
  88. }catch(Exception e){
  89. throw new RuntimeException("解密字符串[" + data + "]时遇到异常", e);
  90. }
  91. }
  92. public String sign(String data){
  93. try{
  94. //sign
  95. Signature signature = Signature.getInstance(RSA_ALGORITHM_SIGN);
  96. signature.initSign(privateKey);
  97. signature.update(data.getBytes(CHARSET));
  98. return Base64.encodeBase64URLSafeString(signature.sign());
  99. }catch(Exception e){
  100. throw new RuntimeException("签名字符串[" + data + "]时遇到异常", e);
  101. }
  102. }
  103. public boolean verify(String data, String sign){
  104. try{
  105. Signature signature = Signature.getInstance(RSA_ALGORITHM_SIGN);
  106. signature.initVerify(publicKey);
  107. signature.update(data.getBytes(CHARSET));
  108. return signature.verify(Base64.decodeBase64(sign));
  109. }catch(Exception e){
  110. throw new RuntimeException("验签字符串[" + data + "]时遇到异常", e);
  111. }
  112. }
  113. private static byte[] rsaSplitCodec(Cipher cipher, int opmode, byte[] datas, int keySize){
  114. int maxBlock = 0;
  115. if(opmode == Cipher.DECRYPT_MODE){
  116. maxBlock = keySize / 8;
  117. }else{
  118. maxBlock = keySize / 8 - 11;
  119. }
  120. ByteArrayOutputStream out = new ByteArrayOutputStream();
  121. int offSet = 0;
  122. byte[] buff;
  123. int i = 0;
  124. try{
  125. while(datas.length > offSet){
  126. if(datas.length-offSet > maxBlock){
  127. buff = cipher.doFinal(datas, offSet, maxBlock);
  128. }else{
  129. buff = cipher.doFinal(datas, offSet, datas.length-offSet);
  130. }
  131. out.write(buff, 0, buff.length);
  132. i++;
  133. offSet = i * maxBlock;
  134. }
  135. }catch(Exception e){
  136. throw new RuntimeException("加解密阀值为["+maxBlock+"]的数据时发生异常", e);
  137. }
  138. byte[] resultDatas = out.toByteArray();
  139. IOUtils.closeQuietly(out);
  140. return resultDatas;
  141. }
  142. }
参考

github地址: https://github.com/liamylian/...

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/25874.html

相关文章

  • RSA加密解密数据大小限制phpgojava互通实现

    摘要:加解密中必须考虑到的密钥长度明文长度和密文长度问题。而只要用到,那么就要占用实际的明文长度,于是实际明文长度需要减去字节长度。所以如果要对任意长度的数据进行加密,就需要将数据分段后进行逐一加密,并将结果进行拼接。 RSA加解密中必须考虑到的密钥长度、明文长度和密文长度问题。明文长度需要小于密钥长度,而密文长度则等于密钥长度。因此当加密内容长度大于密钥长度时,有效的RSA加解密就需要对内...

    whjin 评论0 收藏0
  • Python&Java互通rsa加密解密

    摘要:我们只考虑能解密就行明文公钥加密,私钥解密密文明文公钥私钥使用生成格式的公钥私钥文件。直接使用该密钥需要转换为格式公钥私钥,密钥字符串不需要。库安装会有环境问题,直接安装成功,安装失败。 记录一次项目使用RSA加解密 项目使用Java和Python在开发,RSA加密解密互通代码: Python代码 # -*- coding: utf-8 -*- RSA加解密 import base...

    Arno 评论0 收藏0
  • Golang 实现RSA 加密解密(附带php

    摘要:安全总是很重要的,各个语言对于通用的加密算法都会有实现。对于和加密算法本身,请查阅相关资料在中,很多功能经常是一个函数解决而中的却不是。该文讨论加密解密。一概要这是一个非对称加密算法,一般通过公钥加密,私钥解密。 安全总是很重要的,各个语言对于通用的加密算法都会有实现。前段时间,用Go实现了RSA和DES的加密解密,在这分享一下。(对于RSA和DES加密算法本身,请查阅相关资料) 在P...

    kun_jian 评论0 收藏0
  • PHP 与 C++ RSA解密问题记录

    摘要:第二次访问接口,客户端需使用返回公钥加密访问参数,之后将加密后的参数和一起发送给服务端进行验证。关于函数的详细介绍可以看上一位朋友的博客,链接在此简单总结用加密公钥传递给用公钥加密信息传递给解密 RSA非对称加密,在网络鉴权中使用很多。本人也是在PHP与C++交互鉴权时出现问题,在解决问题过程中发现,网上对相关问题的描述很少,所在这里记录下,希望对遇到相似问题的朋友有所帮助。 问题情景...

    testHs 评论0 收藏0

发表评论

0条评论

RobinQu

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<