资讯专栏INFORMATION COLUMN

基于X11-ARIMA模型的时间序列分析

chengtao1633 / 1565人阅读

摘要:对时间序列模型进行优化首先将时序数据分解为趋势分量,季节周期分量和随机分量对趋势分量使用模型进行拟合季节周期分量则使用历史同期分量随机分量则是使用历史同类的平均值进行预测使用面向对象的方式,构造模型的类,自动选取最优的模型参数定义的类计算最

**对时间序列模型进行优化
1.首先将时序数据分解为趋势分量,季节周期分量和随机分量
2.对趋势分量使用ARIMA模型进行拟合
3.季节周期分量则使用历史同期分量
4.随机分量则是使用历史同类的平均值进行预测
5.使用面向对象的方式,构造模型的类,自动选取最优的模型参数**

import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pylab  as plt
from statsmodels.tsa.stattools import adfuller
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf 
import sys
from dateutil.relativedelta import relativedelta
from  copy import deepcopy
from statsmodels.tsa.arima_model import ARMA
import warnings
warnings.filterwarnings("ignore")```
定义ARIMA的类

class arima_model:

def __init__(self,ts,maxLag = 9):
    self.data_ts = ts
    self.resid_ts = None
    self.predict_ts = None
    self.forecast_ts = None
    self.maxLag = maxLag
    self.p = maxLag
    self.q = maxLag
    self.properModel = None
    self.bic = sys.maxsize

#计算最优的ARIMA模型,将相关结果赋给相应的属性
def get_proper_model(self):
    self._proper_model()
    self.predict_ts = deepcopy(self.properModel.predict())
    self.resid_ts = deepcopy(self.properModel.resid)
    self.forecast_ts = deepcopy(self.properModel.forecast())

#对于给定范围内的p,q计算拟合得最好的arima模型,这里是对差分好的数据进行拟合,故差分恒为0
def _proper_model(self):
    for p in np.arange(self.maxLag):
        for q in np.arange(self.maxLag):
            model = ARMA(self.data_ts, order = (p,q))
            try:
                results_ARMA = model.fit(disp = -1, method = "css")
            except:
                continue
            bic = results_ARMA.bic
            
            if  bic < self.bic:
                self.p = p
                self.q = q
                self.properModel = results_ARMA
                self.bic = bic
                self.resid_ts = deepcopy(self.properModel.resid)
                self.predict_ts = self.properModel.predict()

#参数确定模型
def certain_model(self,p,q):
    model = ARMA(self.data_ts,order = (p,q))
    try:
        self.properModel = model.fit(disp = -1,method = "css")
        self.p = p
        self.q = q
        self.bic = self.properModel.bic
        self.predict_ts = self.properModel.predict()
        self.resid_ts = deepcopy(self.properModel.resid)
        self.forecast_ts = self.properModel.forecast()
    except:
        print ("You can not fit the model with this parameter p,q")```
        
dateparse = lambda dates:pd.datetime.strptime(dates,"%Y-%m")
#paese_dates指定日期在哪列 index_dates将年月日的哪个作为索引,date_parser将字符串转为日期
f = open("D:福建AirPassengers.csv")
data = pd.read_csv(f, parse_dates=["Month"],index_col="Month",date_parser=dateparse)
ts = data["#Passengers"]
def draw_ts(timeSeries,title):
    f = plt.figure(facecolor = "white")
    timeSeries.plot(color = "blue")
    plt.title(title)
    plt.show()

def seasonal_decompose(ts):
    from statsmodels.tsa.seasonal import seasonal_decompose
    decomposition = seasonal_decompose(ts, model = "multiplicative")
    trend = decomposition.trend
    seasonal = decomposition.seasonal
    residual = decomposition.resid
    draw_ts(ts,"origin")
    draw_ts(trend,"trend")
    draw_ts(seasonal,"seasonal")
    draw_ts(residual,"residual")
    return trend,seasonal,residual
def testStationarity(ts):
    dftest = adfuller(ts)
    # 对上述函数求得的值进行语义描述
    dfoutput = pd.Series(dftest[0:4], index=["Test Statistic","p-value","#Lags Used","Number of Observations Used"])
    for key,value in dftest[4].items():
        dfoutput["Critical Value (%s)"%key] = value
#     print ("dfoutput",dfoutput)        
    return dfoutput
ts_log = np.log(ts)
trend,seasonal,residual = seasonal_decompose(ts_log)
seasonal_arr = seasonal
residual = residual.dropna()
residual_mean = np.mean(residual.values)
trend = trend.dropna()

代码运行如下:



#将原始数据分解为趋势分量,季节周期和随机分量
#对trend进行平稳定检验
testStationarity(trend)

#对序列进行平稳定处理
trend_diff_1 = trend.diff(1)
trend_diff_1 = trend_diff_1.dropna()
draw_ts(trend_diff_1,"trend_diff_1")
testStationarity(trend_diff_1)
trend_diff_2 = trend_diff_1.diff(1)
trend_diff_2 = trend_diff_2.dropna()
draw_ts(trend_diff_2,"trend_diff_2")
testStationarity(trend_diff_2)
#使用模型拟合趋势分量
#使用模型参数的自动识别
model = arima_model(trend_diff_2)
model.get_proper_model()
predict_ts = model.properModel.predict()

#还原数据,因为使用的是乘法模型,将趋势分量还原之后需要乘以对应的季节周期分量和随机分量
diff_shift_ts = trend_diff_1.shift(1)
diff_recover_1 = predict_ts.add(diff_shift_ts)
rol_shift_ts = trend.shift(1)
diff_recover = diff_recover_1.add(rol_shift_ts)
recover = diff_recover["1950-1":"1960-6"] * seasonal_arr["1950-1":"1960-6"] * residual_mean
log_recover = np.exp(recover)
draw_ts(log_recover,"log_recover")

#模型评价
ts_quantum = ts["1950-1":"1960-6"]
plt.figure(facecolor = "white")
log_recover.plot(color = "blue",label = "Predict")
ts_quantum.plot(color = "red", label = "Original")
plt.legend(loc = "best")
plt.title("RMSE %.4f" % np.sqrt(sum((ts_quantum - log_recover) ** 2) / ts_quantum.size))
plt.show()

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/41868.html

相关文章

  • Google内部案例分享 | 是如何构建定制化TensorFlow预测系统

    摘要:预测事件本质上是我们通过机器学习预测系统,创造出来的一个假想事件,并根据预测阈值的不同,可以在下载安装及最终付费之间做优化调节。目前,此机器学习系统已在行业内上线,每天会分析预测上百万用户,帮助他们优化游戏内及广告体验。 近年来,移动端游戏随着智能手机技术的发展,越来越成为人们娱乐休闲的新模式。据 NewZoo 数据调查研究发现,全球手机端游戏已达到 21 亿玩家规模,呈 14% 同比年增长...

    Batkid 评论0 收藏0
  • [译]使用Google Cloud计算引擎和机器学习算法实现产品推荐

    摘要:经过一段时间的说句搜集,当具备一定的数据量时,你就可以用通过机器学习算法来执行一些有用的分析并产生一些有价值的推荐了。 翻译自 Google Cloud Platform 原文标题:Using Machine Learning on Compute Engine to Make Product Recommendations 原文地址:https://cloud.google.com/...

    eternalshallow 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<