资讯专栏INFORMATION COLUMN

Python 数据分析之 pandas 进阶(二)

lingdududu / 2037人阅读

摘要:九时间序列时区表示时区转换时区跨度转换十画图图片描述十一从版本开始,可以在中支持类型的数据。

六、分组

对于“group by”操作,我们通常是指以下一个或多个操作步骤:
(Splitting)按照一些规则将数据分为不同的组
(Applying)对于每组数据分别执行一个函数
(Combining)将结果组合刀一个数据结构中
将要处理的数组是:

    df = pd.DataFrame({
            "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
            "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
            "C": np.random.randn(8),
            "D": np.random.randn(8)
        })
    df
     
        A    B    C            D
    0    foo    one    0.961295    -0.281012
    1    bar    one    0.901454    0.621284
    2    foo    two    -0.584834    0.919414
    3    bar    three    1.259104    -1.012103
    4    foo    two    0.153107    1.108028
    5    bar    two    0.115963    1.333981
    6    foo    one    1.421895    -1.456916
    7    foo    three    -2.103125    -1.757291

1、分组并对每个分组执行sum函数:

    df.groupby("A").sum()
     
        C            D
    A        
    bar    2.276522    0.943161
    foo    -0.151661    -1.467777 

2、通过多个列进行分组形成一个层次索引,然后执行函数:

    df.groupby(["A", "B"]).sum()
     
            C            D
    A    B        
    bar    one    0.901454    0.621284
            three    1.259104        -1.012103
            two    0.115963        1.333981
    foo    one    2.383191    -1.737928
            three    -2.103125    -1.757291
            two    -0.431727    2.027441   
七、Reshaping

Stack

    tuples = list(zip(*[["bar", "bar", "baz", "baz",
                         "foo", "foo", "qux", "qux"],
                        ["one", "two", "one", "two",
                         "one", "two", "one", "two"]]))
    tuples
     
    [("bar", "one"),
     ("bar", "two"),
     ("baz", "one"),
     ("baz", "two"),
     ("foo", "one"),
     ("foo", "two"),
     ("qux", "one"),
     ("qux", "two")]    
    index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"])
    df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"])
    df2 = df[:4]
    df2
     
             A            B
    first    second        
    bar    one    -0.907306    -0.009961
            two    0.905177    -2.877961
    baz    one    -0.356070    -0.373447
            two    -1.496644    -1.958782
    stacked = df2.stack()
    stacked 
     
    first  second   
    bar    one     A   -0.907306
                   B   -0.009961
           two     A    0.905177
                   B   -2.877961
    baz    one     A   -0.356070
                   B   -0.373447
           two     A   -1.496644
                   B   -1.958782
    dtype: float64
    stacked.unstack()
     
            A            B
    first    second        
    bar    one    -0.907306    -0.009961
            two    0.905177    -2.877961
    baz    one    -0.356070    -0.373447
            two    -1.496644    -1.958782
    stacked.unstack(1)
     
        second    one           two
    first            
    bar    A    -0.907306    0.905177
            B    -0.009961    -2.877961
    baz    A    -0.356070    -1.496644
            B    -0.373447    -1.958782    
八、相关操作

要处理的数组为:

    df
     
                A            B            C            D    F
    2013-01-01    0.000000    0.000000    0.135704    5    NaN
    2013-01-02    0.139027    1.683491    -1.031190    5    1
    2013-01-03    -0.596279    -1.211098    1.169525    5    2
    2013-01-04    0.367213    -0.020313    2.169802    5    3
    2013-01-05    0.224122    1.003625    -0.488250    5    4
    2013-01-06    0.186073    -0.537019    -0.252442    5    5

(一)、统计

1、执行描述性统计:

    df.mean()
     
    A    0.053359
    B    0.153115
    C    0.283858
    D    5.000000
    F    3.000000
    dtype: float64   

2、在其他轴上进行相同的操作:

    df.mean(1)
     
    2013-01-01    1.283926
    2013-01-02    1.358266
    2013-01-03    1.272430
    2013-01-04    2.103341
    2013-01-05    1.947899
    2013-01-06    1.879322
    Freq: D, dtype: float64

3、对于拥有不同维度,需要对齐的对象进行操作,pandas会自动的沿着指定的维度进行广播

    dates
    s = pd.Series([1,3,4,np.nan,6,8], index=dates).shift(2)
    s
     
    DatetimeIndex(["2013-01-01", "2013-01-02", "2013-01-03", "2013-01-04",
                   "2013-01-05", "2013-01-06"],
                  dtype="datetime64[ns]", freq="D")
     
    2013-01-01   NaN
    2013-01-02   NaN
    2013-01-03     1
    2013-01-04     3
    2013-01-05     4
    2013-01-06   NaN
    Freq: D, dtype: float64

(二)、Apply

对数据应用函数:

    df.apply(np.cumsum)
     
                A            B            C            D    F
    2013-01-01    0.000000    0.000000    0.135704    5    NaN
    2013-01-02    0.139027    1.683491    -0.895486    10    1
    2013-01-03    -0.457252    0.472393    0.274039    15    3
    2013-01-04    -0.090039    0.452081    2.443841    20    6
    2013-01-05    0.134084    1.455706    1.955591    25    10
    2013-01-06    0.320156    0.918687    1.703149    30    15
    df.apply(lambda x: x.max() - x.min())
     
    A    0.963492
    B    2.894589
    C    3.200992
    D    0.000000
    F    4.000000
    dtype: float64

(三)、字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素。

    s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"])
    s.str.lower()
     
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object
九、时间序列

1、时区表示:

    rng = pd.date_range("3/6/2012 00:00", periods=5, freq="D")
    ts = pd.Series(np.random.randn(len(rng)), rng)
    ts
     
    2012-03-06   -0.932261
    2012-03-07   -1.405305
    2012-03-08    0.809844
    2012-03-09   -0.481539
    2012-03-10   -0.489847
    Freq: D, dtype: float64
    ts_utc = ts.tz_localize("UTC")
    ts_utc
     
    2012-03-06 00:00:00+00:00   -0.932261
    2012-03-07 00:00:00+00:00   -1.405305
    2012-03-08 00:00:00+00:00    0.809844
    2012-03-09 00:00:00+00:00   -0.481539
    2012-03-10 00:00:00+00:00   -0.489847
    Freq: D, dtype: float64

2、时区转换

    ts_utc.tz_convert("US/Eastern")
     
    2012-03-05 19:00:00-05:00   -0.932261
    2012-03-06 19:00:00-05:00   -1.405305
    2012-03-07 19:00:00-05:00    0.809844
    2012-03-08 19:00:00-05:00   -0.481539
    2012-03-09 19:00:00-05:00   -0.489847
    Freq: D, dtype: float64

3、时区跨度转换

    rng = pd.date_range("1/1/2012", periods=5, freq="M")
    ts = pd.Series(np.random.randn(len(rng)), index=rng)
    ps = ts.to_period()
    ts
    ps
    ps.to_timestamp()
     
    2012-01-31    0.932519
    2012-02-29    0.247016
    2012-03-31   -0.946069
    2012-04-30    0.267513
    2012-05-31   -0.554343
    Freq: M, dtype: float64
   
  
    2012-01    0.932519
    2012-02    0.247016
    2012-03   -0.946069
    2012-04    0.267513
    2012-05   -0.554343
    Freq: M, dtype: float64
     
    2012-01-01    0.932519
    2012-02-01    0.247016
    2012-03-01   -0.946069
    2012-04-01    0.267513
    2012-05-01   -0.554343
    Freq: MS, dtype: float64
十、画图
    ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
    ts = ts.cumsum()
    ts

图片描述

十一、Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据。

    df = pd.DataFrame({
            "id":[1,2,3,4,5,6],
            "raw_grade":["a","b","b","a","a","e"]
        })
    df
     
        id    raw_grade
    0    1    a
    1    2    b
    2    3    b
    3    4    a
    4    5    a
    5    6    e

1、将原始的grade转换为Categorical数据类型:

    df["grade"] = df["raw_grade"].astype("category", ordered=True)
    df["grade"] 
     
    0    a
    1    b
    2    b
    3    a
    4    a
    5    e
    Name: grade, dtype: category
    Categories (3, object): [a < b < e]

2、将Categorical类型数据重命名为更有意义的名称:

    df["grade"].cat.categories = ["very good", "good", "very bad"]

3、对类别进行重新排序,增加缺失的类别:

    df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
    df["grade"]
     
    0    very good
    1         good
    2         good
    3    very good
    4    very good
    5     very bad
    Name: grade, dtype: category
    Categories (5, object): [very bad < bad < medium < good < very good]

4、排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

    df.sort("grade")
     
        id    raw_grade    grade
    5    6    e            very bad
    1    2    b            good
    2    3    b            good
    0    1    a            very good
    3    4    a            very good
    4    5    a            very good

5、对Categorical列进行排序时存在空的类别:

    df.groupby("grade").size()
     
    grade
    very bad     1
    bad          0
    medium       0
    good         2
    very good    3
    dtype: int64

以上代码不想自己试一试吗?
镭矿 raquant提供 jupyter(研究) 在线练习学习 python 的机会,无需安装 python 即可运行 python 程序。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/45532.html

相关文章

  • Python 数据分析 pandas 进阶(一)

    摘要:所处理的数组是方法可以对指定轴上的索引进行改变增加删除操作,这将返回原始数据的一个拷贝去掉包含缺失值的行对缺失值进行填充对数据进行布尔填充五合并提供了大量的方法能够轻松的对和对象进行各种符合各种逻辑关系的合并操作。 导入本篇中使用到的模块: import numpy as np import pandas as pd from pandas import Ser...

    red_bricks 评论0 收藏0
  • 首次公开,整理12年积累的博客收藏夹,零距离展示《收藏夹吃灰》系列博客

    摘要:时间永远都过得那么快,一晃从年注册,到现在已经过去了年那些被我藏在收藏夹吃灰的文章,已经太多了,是时候把他们整理一下了。那是因为收藏夹太乱,橡皮擦给设置私密了,不收拾不好看呀。 ...

    Harriet666 评论0 收藏0
  • 【三万粉丝终极福利】Python、C、Java三大语言学习路线和资源整理

    摘要:今天给大家带来三万粉丝三大语言学习路线和资源整理,收藏就对了。还有对数组面向对象和异常处理等。语言学习路线一基础阶段技能树掌握脚本界面编程能力数据库基本爬虫多线程多进程开发能力,可以胜任基本的开发工作。 大家好,我是辣条。 今天给大家带来三万粉丝三大语言学习路线和资源整理,收藏就对了。 目录...

    GitChat 评论0 收藏0
  • AI学习路线

    摘要:针对公司样本不足,采用小样本技术和深度学习技术结合,是项目落地的解决方案。深度学习作为当前机器学习领域最热门的技术之一,已经在图像处理领域获得了应用,并且展现出巨大的前景。旨在帮助同学们快速上手如何使用库来完整机器学习案例。 阶段一、人工智能基础 - 高等数学必知必会 本阶段主要从数据分析、概率论和线性代数及矩阵和凸优化这四大块讲解基础,旨在训练大家逻辑能力,分析能力。拥有良好的数学基...

    xuweijian 评论0 收藏0
  • Python数据分析入门pandas总结基础(

    摘要:一大熊猫世界来去自如的老生常谈,从基础来看,我们仍然关心对于与外部数据是如何交互的。函数受限制问题唯一重要的参数,标志着一个的第个页将会被取出。数据分析入门之总结基础一欢迎来翔的博客查看完成版。 一.大熊猫世界来去自如:Pandas的I/O 老生常谈,从基础来看,我们仍然关心pandas对于与外部数据是如何交互的。 1.1 结构化数据输入输出 read_csv与to_csv 是⼀对...

    verano 评论0 收藏0

发表评论

0条评论

lingdududu

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<