资讯专栏INFORMATION COLUMN

futureTask的超时原理解析

liangzai_cool / 1163人阅读

摘要:序本文主要解析一下的超时原理。这里等待超时,然后返回原始状态小结由此可见,超时的机制其实不能中断里头实际执行的动作,超时只是让调用线程能够在指定时间返回而已,而底层调用的方法,实际还在执行。这里是需要额外注意的。

本文主要解析一下futureTask的超时原理。

实例
ExecutorService executor = Executors.newFixedThreadPool(1);
Future future = executor.submit(
                    new Callable() {
                        public Void call() throws Exception {
                            //do something
                            return null;
                        }
                    });
future.get(500, TimeUnit.MILLISECONDS);

里头构造的是java/util/concurrent/ThreadPoolExecutor.java

submit

java/util/concurrent/AbstractExecutorService.java

public  Future submit(Callable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
}
protected  RunnableFuture newTaskFor(Callable callable) {
        return new FutureTask(callable);
}
execute

java/util/concurrent/ThreadPoolExecutor.java

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn"t, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

这里只是放入workQueue,然后判断是否需要添加线程

runWorker

java/util/concurrent/ThreadPoolExecutor.java

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

这里循环从workQueue取出task,然后调用task.run()

futureTask.run

java/util/concurrent/FutureTask.java

public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

这里如果执行完成的话,会调用set(result),而异常的话,会调用setException(ex)

protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = t;
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            finishCompletion();
        }
}
protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
}

都把状态从NEW设置为COMPLETING

future.get(long)
public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
            throw new TimeoutException();
        return report(s);
    }

这里看awaitDone,等待指定的时候,发现状态不是COMPLETING,则抛出TimeoutException,让调用线程返回。

private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

这里等待超时,然后返回原始状态

小结

由此可见,超时的机制其实不能中断callable里头实际执行的动作,超时只是让调用线程能够在指定时间返回而已,而底层调用的方法,实际还在执行。这里是需要额外注意的。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/67850.html

相关文章

  • FutureTask源码分析笔记

    摘要:主要的实现实际上运行还是一个,它对做了一个封装,让开发人员可以从其中获取返回值是有状态的共种状态,四种状态变换的可能和的区别通过方法调用有返回值可以抛异常结果的实现原理判断状态非状态则直接进入返回结果处于状态,则进入等待流程获 主要的实现FutureTask # FutureTask实际上运行还是一个runnable,它对callable做了一个封装,让开发人员可以从其中获取返回值; ...

    PascalXie 评论0 收藏0
  • 追踪解析 FutureTask 源码

    摘要:零前期准备文章异常啰嗦且绕弯。版本版本简介是中默认的实现类,常与结合进行多线程并发操作。所以方法的主体其实就是去唤醒被阻塞的线程。本文仅为个人的学习笔记,可能存在错误或者表述不清的地方,有缘补充 零 前期准备 0 FBI WARNING 文章异常啰嗦且绕弯。 1 版本 JDK 版本 : OpenJDK 11.0.1 IDE : idea 2018.3 2 ThreadLocal 简介 ...

    xcc3641 评论0 收藏0
  • FutureTask源码分析

    摘要:从而可以启动和取消异步计算任务查询异步计算任务是否完成和获取异步计算任务的返回结果。原理分析在分析中我们没有看它的父类,其中有一个方法,返回一个,说明该方法可以获取异步任务的返回结果。 FutureTask介绍 FutureTask是一种可取消的异步计算任务。它实现了Future接口,代表了异步任务的返回结果。从而FutureTask可以启动和取消异步计算任务、查询异步计算任务是否完成...

    luqiuwen 评论0 收藏0
  • FutureTask

    摘要:可取消的异步计算。只有在计算完成后才能检索结果如果计算还没有完成,方法将会被阻塞。任务正常执行结束。任务执行过程中发生异常。任务即将被中断。运行完成后将会清空。根据执行结果设置状态。 FutureTask What is it ​ 可取消的异步计算。该类提供了 Future的基本实现,其中包括启动和取消计算的方法,查询计算是否完成以及检索计算结果的方法。只有在计算完成后才能检索...

    GeekGhc 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<